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Abstract
The time-tested Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity is generally
accepted to be the correct theory of conventional superconductivity by physicists and, by
extension, by the world at large. There are, however, an increasing number of ‘red flags’
that strongly suggest the possibility that BCS theory may be fundamentally flawed.
An ever-growing number of superconductors are being classified as ‘unconventional’, not
described by the conventional BCS theory and each requiring a different physical mechanism.
In addition, I argue that BCS theory is unable to explain the Meissner effect, the most
fundamental property of superconductors. There are several other phenomena in
superconductors for which BCS theory provides no explanation. Furthermore, BCS theory
has proven unable to predict any new superconducting compounds. This paper suggests the
possibility that BCS theory itself as the theory of ‘conventional’ superconductivity may
require a fundamental overhaul. I outline an alternative to conventional BCS theory proposed
to apply to all superconductors, ‘conventional’ as well as ‘unconventional’, that offers an
explanation for the Meissner effect as well as for other puzzles and provides clear guidelines
in the search for new high temperature superconductors.

PACS numbers: 74.20.−z, 74.20.Fg

1. Introduction

In the progress of science, it is often the case that a theory
is superseded by a new theory without being negated. An
example is classical mechanics, that was superseded by
quantum mechanics and special relativity but retained its
validity for length scales and speeds familiar in everyday
life. Then there are other cases where theories thought to be
correct for a long time are negated by new theories that end
up replacing them [1]. Examples of the latter are Ptolemy’s
theory of planetary motion (negated by Copernicus’ theory),
the phlogiston theory (negated by Boyle’s theory of caloric
energy), and the theory of fixed continents with land bridges
(negated by Wegener’s theory of continental drift). There are
many other such examples [1], and the purpose of this paper is
to suggest that Bardeen–Cooper–Schrieffer (BCS) theory may
become one of them.

In this paper, what I mean by ‘BCS theory’ is the
BCS pairing theory through the electron–phonon interaction
mechanism as formulated in the original BCS paper [2], and

its extension to include the effect of a retarded interaction,
generally known as Migdal–Eliashberg theory [3, 4]. This
theoretical framework is generally believed to describe the
superconductivity of ‘conventional’ superconductors, both
type I and type II, including all the elements and thousands
of compounds [5, 6]. Then there are other classes of materials
discovered in recent years generally believed not to be
described by BCS theory, as discussed later in this paper.

In various realms of human activity, there are ‘established
truths’ over long periods of time that may subsequently
be completely overhauled1. Before that happens there are
usually anomalies [1], or ‘red flags’, that signal inadequacies
of the established scheme, that are disregarded for a long
time. In science, as argued by Lightman and Gingerich [8],
anomalies are often recognized as such only after a new
theoretical framework is found that explains them. They
coined the term ‘retrorecognition’ for this phenomenon. What
is perceived as true and real and time-tested can change

1 I discuss elsewhere analogies between the situation with BCS theory and
such situations in other contexts [7].
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radically from one day to the next. This will happen if
BCS theory is proven wrong, either by an incontrovertible
experiment or an alternative theory or both. Today, the vast
majority of physicists believe this possibility is unthinkable.
However, I will discuss a number of ‘red flags’ in favor
of this possibility. Most importantly, I argue that BCS
theory has an unrecognized fundamental flaw, its inability to
explain the most fundamental property of superconductors,
the Meissner effect, and that this calls the validity of the entire
framework into question, including the validity of London’s
electrodynamic description of superconductors [9]. Also, I
point out that BCS theory is completely unable to predict
superconductivity in new materials. I discuss several other
reasons that make the BCS scheme suspect. In the last section,
I outline an alternative to BCS theory proposed to describe all
superconducting materials ([10] and references therein).

2. Why BCS theory is generally accepted as valid

There are good reasons why a set of incorrect beliefs can
go unchallenged for a long time [11]. Here, I list some of
the factors that I propose contributed to make BCS theory
successful for so long without being necessarily correct.

2.1. Kernel of truth

Parts of BCS theory are certainly correct and represented
an important advance when first proposed: the concepts
of Cooper pairs, of macroscopic phase coherence, and
the existence of an energy gap are incontrovertible. These
elements of the theory led to explanation and even prediction
of puzzling experimental data such as nuclear magnetic
resonance (NMR) relaxation rate [12] and Josephson
tunneling [13]. However many other aspects of BCS theory
and especially the electron–phonon mechanism I suggest are
not correct despite being universally accepted.

The fact that part of a theory is correct of course does
not make the entire theory correct. The BCS electron–phonon
mechanism of superconductivity may have been convincing
around 1970 as a ‘universal’ mechanism for all known
superconductors [14]. By now, as discussed below, there are
at least ten different classes of materials that clearly cannot be
explained by the electron–phonon mechanism, each requiring
its own different mechanism if BCS theory is assumed to be
correct.

2.2. Eminence of key proponent

Just the year before he proposed BCS theory (1957), John
Bardeen had been awarded the Nobel prize in physics for the
invention of the transistor; he had a long and distinguished
career in theoretical physics, and had been working and
publishing on the problem of superconductivity for over
20 years. In 1956, he had published an authoritative review
on superconductivity [15]. The fact that Bardeen was regarded
as an authority in superconductivity at the time is evidenced
by the fact that the New York Times wrote a story on the BCS
theory of superconductivity less than a month after it appeared
in print [16].

2.3. Early doubters proven wrong

There were early doubts about the validity of BCS theory
because its ‘proof’ of the Meissner effect failed to satisfy
gauge invariance [17]. However, it was later shown that the
BCS derivation was valid in the particular case of a transverse
gauge and plausible arguments were given for generalizing the
theory to an arbitrary gauge [18]. Thus, the early doubts were
allayed and as a consequence the theory became more firmly
established.

As I will argue later, these early discussions did not really
address the essence of the Meissner effect, which remained
unexplained within BCS theory. But the fact that the early
doubts had been resolved undoubtedly led to the general belief
that all doubts concerning the Meissner effect within BCS had
been discussed at length and resolved and there was no point
to rehash them.

2.4. Selected few get to participate

One does not become an expert in BCS theory overnight.
A background in many-body theory and second quantization
is required as well as in solid-state physics and statistical
physics. Concepts such as off-diagonal long-range order and
broken gauge invariance are rather subtle. Beginning students
asking interesting questions such as how can one possibly
explain the Meissner effect, or why the theory is unable to
predict new superconductors, are told to wait until they master
the advanced mathematics and physics required to really
understand it, or else go elsewhere. By the time they have
mastered this technology, they have forgotten the interesting
questions they had or have convinced themselves that they are
no longer relevant.

2.5. Gatekeepers and non-gatekeeper participants

The ‘gatekeepers’ of BCS theory are those relatively
few physicists who have performed detailed Eliashberg
calculations of first-principles bandstructures and electron–
phonon interaction parameters to calculate superconducting
properties of real materials. The vast majority of physicists
that use BCS theory do so with model Hamiltonians
that do not have a clearcut justification nor very direct
connection to real materials. The gatekeepers tell us that their
calculations reproduce the measured superconducting Tc’s,
gaps, isotope effect, structure in tunneling characteristics,
etc of real materials, and thus prove beyond doubt that
BCS-electron–phonon theory describes conventional super-
conductors. The rest of physicists blindly trust the
gatekeeper’s statements.

However, the BCS ‘gatekeepers’ have a lot to lose from
BCS theory being wrong. They have invested considerable
time and effort in becoming expert in these calculations, and
benefit from the status quo. They have funding to perform
such work, their work is being cited by the non-gatekeeper
participants, and their careers advance. They are the best
qualified to question BCS theory but have no strong incentive
to do so, hence they may overlook ‘red flags’ that suggest
problems with BCS theory.
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2.6. Red flags and early questioners

The BCS theory was widely accepted soon after the
publication but some early questions were raised whether
the electron–phonon mechanism applied to the transition
metal superconductors [19–21]. However, by 1969 when
Park’s treatise on superconductivity was published [14] it
was universally accepted that BCS-electron–phonon theory
described all known superconductors.

Except for one persistent gadfly: Bernd Matthias, a
well-respected solid-state experimentalist who had been
making superconducting materials in his lab for many years
([22] and references therein). In paper after paper and
conference proceedings after conference proceedings in the
1960s and 1970s, Matthias argued that BCS theory could not
possibly be the correct theory of superconductivity because
it was unable to predict new superconducting materials.
Matthias found many new superconductors through empirical
rules that he devised, but found no guidance whatsoever
in BCS theory. The physics community politely tolerated
Matthias’ rantings and ravings but he did not produce any
followers. When he passed away in 1980, the sole voice
calling into question BCS theory went silent.

2.7. The alleged ‘smoking gun’

The most quoted reason given as convincing proof that
BCS-electron–phonon theory describes conventional
superconductors is the structure in tunneling characteristics
detected in normal-insulator–superconductor tunneling
experiments, where small wiggles in the tunneling
conductance as function of voltage match the peaks and
valleys of the phonon density of states as function of
frequency measured in neutron scattering experiments in
several materials, most notably Pb [23–25].

I am not disputing the interpretation that the structure
in the tunneling conductance reflects the phonon spectrum.
As Bernd Matthias said [22], ‘you can’t ever stop a crystal
lattice from rattling’. Even the gap of ordinary semiconductors
is modulated (but not caused!) by the electron–phonon
interaction and shows an isotope effect [26]. What I am
disputing is the interpretation that the small modulation
(few %) of the tunneling conductance spectrum by the
phonons is proof that superconductivity is caused by lattice
vibrations and would not exist for infinite ionic mass.

The interpretation of tunneling results is cast in terms
of the spectral function α2 F(ω), where F(ω) is the
phonon spectral function determined from neutron scattering
experiments. What is not emphasized is that α2 is itself
often a strong function of ω that is not directly accessible to
experiment [27].

2.8. Role of physics journals

The most prestigious as well as the mainstream physics
publications such as Physical Review Letters, Science, Nature,
PNAS, Physical Review B, International Journal of Modern
Physics B, etc, are completely silent about the possibility
that BCS theory could be wrong, while being full of papers
devoted to applications of BCS theory. Papers submitted to
these journals casting doubt on the validity of BCS theory

to explain conventional superconductors are not accepted for
publication2.

2.9. Long timescale

One of the arguments physicists would give to discount the
possibility that BCS theory could be wrong is that it has
been around for so long, over 50 years. I would argue that
because of the large number of vested interests and highly
motivated gatekeepers that develop around a flawed scheme
the timescale for it being overhauled may be much longer than
most people would expect.

2.10. BCS theory as a ‘Ponzi scheme’

In a financial ‘Ponzi scheme’, old investors are paid off by
funds contributed by new investors. The old investors spread
the word that this is a good scheme and this induces more new
investors to come in. I am certainly not suggesting that there
is deliberate deception in the case of a scientific theory such as
BCS, still I propose that a similar phenomenon occurs [7]. The
payoff to the old ‘investors’ (established physicists) comes in
the form of citations to their papers by younger physicists and
awards of grant money through which the older physicists are
expected to train the new generation of physicists. The grant
money also provides for summer salary, equipment, travel
funds and other perks for the older physicists. These payoffs
depend on the existence of a crowd of younger physicists
eager to get into the game and continue building up the theory,
lured by the success of the older physicists as evidenced by
their career advancement, prestige, prizes, etc. Questioning
of the old theory is discouraged in many ways, and early
questioning would result in the young physicist being denied
career opportunities open to his/her non-questioning peers.
The flawed scheme continues building up and reinforced
by those that are allowed to enter, and everybody turns
a blind eye to anomalies that could suggest something is
wrong [8]. There are however many such anomalies (red
flags) in the case of BCS theory, as detailed in the following
section.

3. Red flags in BCS theory

3.1. Lack of transparency

It can certainly be said about BCS theory that it is
anything but transparent. It is extremely hard to explain it
to a non-physicist and even to a non-solid-state physicist,
and it defies intuition. How can the very strong direct
Coulomb repulsion between electrons be overcome by a
small ‘second-order’ electron–ion-induced attraction? Why
are some materials not superconducting at any temperature?
How is it that sometimes a high phonon frequency leads to
high Tc [28, 29] and sometimes a low phonon frequency (the
soft-phonon story [30]) leads to high Tc?

There is no simple intuitive criterion in BCS theory that
allows one to understand qualitative trends in Tc in materials.
The Debye-frequency prefactor in the BCS expression for the

2 For example, before being submitted to Physica Scripta this paper was
submitted for consideration for publication to other journals who declined to
publish it based on the advice of referees.
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critical temperature suggests that going down a column in the
periodic table (where elements have the same valence-electron
configuration) Tc should decrease due to the increasing
ionic mass. This is not what happens [31]. There are no
qualitative criteria that can be used to estimate even the order
of magnitude of critical temperatures, nor whether a material
is or is not a superconductor. The gatekeeper ‘experts’ tell
us that Tc’s depend on many subtle details and can go up
and down with different combinations of phonon frequencies,
electron–phonon coupling constants, band structure details,
strength of Coulomb interactions and of spin fluctuations,
etc [5, 24, 32–36]. The ‘Coulomb pseudopotential’ serves
as the wildcard that ensures that theory will always fit
experiment [37, 38].

3.2. Increasing number of epicycles

Given that initially the isotope effect was claimed to be the
‘proof’ that the electron–phonon interaction is responsible for
superconductivity, an early observation not easily explained
by BCS theory was the absence of isotope effect in certain
elements like ruthenium [39] and osmium [40] and an inverse
isotope effect in uranium [41]. However, it was argued that
more elaborate versions of the theory could account for the
observations ([42] and references therein) [43].

Another observation calling into doubt the conventional
theory was the absence of a strong electron–phonon structure
in the tunneling spectra of niobium [44, 45], the element with
the highest Tc. However, it was argued that a more elaborate
theory taking into account the proximity effect due to the
complicated nature of the tunnel junctions could explain the
observations [46].

The early transition metals Sc and Y as well as the
late transition metals like Pd are not superconducting at
ambient pressure; even though they would be expected
to be so given their other properties, according to the
conventional theory [47]. To explain this, it is necessary
to invoke the Coulomb pseudopotential ‘wild card’, and
it is argued that ‘antiferromagnetic spin fluctuations’
suppress the expected superconductivity of scandium and
yttrium [48], and ‘ferromagnetic spin fluctuations’ suppress
the expected superconductivity of palladium [49]. However,
it is not explained why these fluctuations do not give rise
to ‘unconventional’ superconductivity in those elements.
For example, it was suggested for Pd a propensity to
p-wave superconductivity induced by ferromagnetic spin
fluctuations [50]. This was however disproved by the finding
of s-wave superconductivity in irradiated Pd at 3.2 K [51].
Furthermore, some of those elements were recently found
to display quite high superconducting transition temperatures
under pressure (not predicted by theory), as discussed in the
following section.

In 1969, when Parks’ treatise on superconductivity was
published [14], there was general agreement that BCS theory
with the electron–phonon mechanism explained all known
superconductors. Particularly, interesting is the article in that
treatise by Gladstone et al on ‘Superconductivity in the
transition metals’ [47]. As mentioned earlier, doubts had been
raised by Matthias and others whether other mechanisms of
pairing may be at play in transition metals [19–22], which

were reviewed in this paper and dismissed. In fact one of
its authors, Jensen, had been one of the early questioners
of BCS-electron–phonon mechanism for lanthanum and
uranium [21]. However, by 1969 he clearly had been brought
‘into the fold’: Gladstone et al paper concludes, referring
to predictions of non-electron–phonon superconductivity in
lanthanum, ‘Although initially these predictions appeared
to be found experimentally, more recent work on cleaner
samples gives no evidence that La is anything but a
phonon-induced BCS superconductor’, and similarly for all
other transition metals.

However, since 1970 at least ten distinct materials
or families of materials have been discovered that exhibit
superconductivity for which there is a consensus that
they cannot be described by the electron–phonon BCS
theory, or at least there are serious doubts whether
they can, namely: (i) high Tc cuprates, hole-doped
(YBa2Cu3O7) and electron-doped (Nd1−x Ce0x CuO4−y);
(ii) heavy fermion materials (CeCu2Si2, UBe13, UPt3);
(iii) organics (TMTSF2PF6); (iv) strontium–ruthenate
(Sr2RuO4); (v) fullerenes (K3C60, Cs3C60); (vi) boro-
carbides (LuNi2B2C, YPd2B2C); (vii) bismuthates
(Ba1−x Kx BiO3, BaPb1−x Bix O3); (viii) ‘almost’ heavy
fermions (U6Fe, URu2Si2, UPd2Al3); (ix) iron arsenide
compounds (LaFeAsO1−x Fx , La1−x Srx FeAs); (x) ferro-
magnetic superconductors (UGe2, URhGe2). In addition,
magnesium diboride (MgB2) was believed initially to be
outside the scope of BCS electron–phonon theory; however,
that has changed by now. We return to this interesting material
in the following subsection.

The ten materials or classes of materials listed above
exhibit each different deviations from conventional BCS
behavior, and/or their Tc is too high to be described by
BCS-electron–phonon theory; however, there is also no
indication that they can all be described by a single alternative
mechanism or theory. Rather, new different mechanisms
and theories have been proposed to describe each of these
situations. If BCS theory is correct for the conventional
superconductors, we would need new different theories
to describe d-wave symmetry states, p-wave symmetry
states, superconductivity arising near a Mott insulating state,
antiferromagnetic spin-fluctuation-induced superconductivity,
ferromagnetic spin-fluctuation-induced superconductivity,
superconductivity induced by low dimensionality, charge-
density-wave-induced superconductivity, superconductivity
induced by inhomogeneity (stripes), d-density waves,
quantum critical points, resonating valence-bond-induced
superconductivity, etc to encompass all these new materials
discovered since 1970.

The Proceedings of the series conference ‘Materials and
Mechanisms of Superconductivity’, held every three years
since 1988, and earlier the Proceedings of the d- and f-band
superconductivity conferences held every two or three years
since 1971, provide a large number of references for these
multiplying entities.

The situation is analogous to the situation in astronomy
shortly before the advent of Copernican theory. To explain
an increasing number of astronomical observations using
the Ptolemy paradigm of the earth as the center of the
universe prevalent at the time, increasingly more complicated
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models postulating an increasing number of epicycles to
describe retrograde motion of planets had to be introduced.
Similarly, for each new observation unexpected within the
conventional BCS theory a new twist is added to the theory
to explain the observation, or else the material is declared to
be ‘unconventional’, hence not described by the conventional
BCS-electron–phonon theory. The validity of conventional
BCS theory for ‘conventional’ superconductors is never
questioned.

3.3. Inability to predict yet ability to post-dict

Matthias repeatedly emphasized that BCS theory and
its implications did not lead to the ability to predict
whether a compound or a family of compounds would be
superconducting. The situation has become even far more
egregious since the 1970s up to today, with the advent of an
ever-increasing number of ‘unconventional’ superconductors
and the discovery of substantially higher temperature
superconductivity in ‘conventional’ superconductors under
applied high pressure.

For a while, the search for new higher Tc superconductors
was directed at compounds with light elements, that would
give rise to a high Debye frequency, which appears
as a prefactor in the BCS expression for Tc. High Tc

superconductivity was predicted for metallic hydrogen [29]
and for metal hydrides [52]. Indeed, superconductivity around
10 K was found in thorium-hydride [53] and in palladium
hydride [54]. Of course, it was very disappointing when
substitution of hydrogen by the heavier isotope deuterium
gave an even higher Tc [55], but theory found a ready way
to explain it [56, 57], and even to this day theorists continue
‘predicting’ that metal hydrides will yield high-temperature
superconductors [58].

Similarly, superconductivity was predicted for the light
metal Lithium, the simplest of simple metals, at ambient
pressure with critical temperature 1K or higher [37, 59]. After
many years, superconductivity at ambient pressure in Li was
found but only at temperatures below 0.0004 K [60].

High Tc was predicted in quasi-one-dimensional
materials, based on Little’s excitonic mechanism for
superconductivity [61]. None of it was found.

Instead, a ‘soft-phonon’ scenario was developed to
‘predict’ relatively high T ′

c s in materials with low-frequency
phonons [32, 62], in response to the experimental findings of
such materials, e.g. the A15 family of compounds [63].

In 1972, Marvin Cohen and Phil Anderson ‘predicted’
that superconductivity with critical temperatures much above
what existed at the time (∼ 20 K) was impossible in any
material [64], through the electron–phonon or any other
mechanism. This did not prevent Time magazine from
reporting in 1987, shortly after superconductivity above
90 K was experimentally discovered [65], that ‘At the
University of California, Berkeley, a group that included
theoretical physicist Marvin Cohen, who had been among
those predicting superconductivity in the oxides two decades
ago, reproduced the 98 K record, then started trying to
beat it’ [66]. However, the first paper written by Cohen
discussing superconductivity in an oxide was in 1964 [67],
where he discussed the just discovered superconductivity

with Tc = 0.28 K in semiconducting SrTiO3 and referred
to his earlier work on possible superconductivity in
semiconductors that did not mention either semiconducting
or superconducting oxides. Subsequently, Cohen ‘predicted’
the carrier concentration dependence of Tc in Sr2RuO4,
including its maximum at ∼ 0.30 K, after it had been
experimentally measured [68]. Never did Cohen consider
in his printed work the possibility of superconductivity in
oxides at higher temperatures until after it was experimentally
discovered.

Magnesium diboride (MgB2) was found to be
superconducting in 2001 with a critical temperature of
39 K [69], completely unprecedented for a metallic compound
with only s- and p-electrons. It was not predicted by theory,
and it exhibits a small isotope effect. Nevertheless this has
not prevented theorists from claiming that the conventional
BCS-electron–phonon theory completely explains the high
Tc of MgB2 [70–73]. Based on these calculations theorists
have now predicted higher Tc superconductivity in related
compounds such as Li1−x BC [74–76] and in BC3 [77, 78].
None has been found in either system [79, 80].

As mentioned in the previous section, scandium is not
superconducting at ambient pressure, and this is ‘explained’
by the Coulomb pseudopotential wildcard [48]. In 1979, Sc
under pressure (∼ 200 kbar) was found to be superconducting
with Tc ∼ 0.35 K [81], and in 2007, its critical temperature
was found to rise to 8.2 K at pressures of 740 kbar [82]. None
of this was predicted by theory, but subsequently calculated
and claimed to be ‘in good agreement with experiment’ [83].
However, shortly thereafter, Scandium’s critical temperature
rose by over a factor of 2, to 19.6 K at 1 Mbar pressure
([84] and references therein). Presumably, we will see shortly
a theoretical ‘prediction’ of this remarkable increase.

More generally, there have been remarkable advances
in achieving superconductivity with higher transition
temperatures in the elements under high pressure in recent
years, e.g. [84, 85]: lithium, Tc = 16 K (Tc = 0) at 800 kbar
(at ambient pressure); boron, 11 K (0) at 250 kbar; sulfur,
Tc = 17.3 K (0) at 1.9 Mbar; calcium, Tc = 25 K (0) at
1.6 Mbar; yttrium, Tc = 19.5 K (0) at 1.1 Mbar; lutecium,
Tc = 12.4 K (0) at 1.7 Mbar; vanadium, Tc = 16.5 K (5.4 K)
at 1.2 Mbar; zirconium, Tc = 11 K (0.55 K) at 300 kbar.
None of these have been predicted by theory, but there is an
ever-increasing number of theoretical ‘post-dictions’ of the
observations [86–93].

For example, in a postdictive study of yttrium under
pressure, it is claimed that theoretical calculations ‘provide a
good interpretation of the measured increase of Tc in these
metals’ [91], yet the results shown indicate that even an
anomalously low Coulomb pseudopotential µ∗

∼ 0.04 yields
a critical temperature substantially lower than the observed
one [91]. Another postdictive calculation for Y under pressure
claims that it ‘demonstrates strong electron–phonon coupling
in this system that can account for the observed range of
Tc’ using a Coulomb pseudopotential value µ∗

= 0.15 [92],
while acknowledging that their more detailed approach ‘has
not yet provided—even for elemental superconductors—the
physical picture and simple trends that would enable us to
claim that we have a clear understanding of strong-coupling
superconductivity’ [92].
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3.4. Blind use of formalism

In order to explain the increasingly higher T ′
c s found in

supposedly ‘conventional’ materials, higher values of the
electron–phonon coupling constant λ have to be used in the
conventional formalism [34]. In fact, as early as 1975 values
of λ as high as 2.5 were postulated to explain the Tc of
Pb–Bi alloys [34]. To explain the superconductivity of Y
under pressure a value of λ = 2.8 is used [92], and λ as
high as 3.1 is assumed to explain the superconductivity of
Li under pressure [89]. However, it has been convincingly
shown analytically [94] that λ values larger than ∼1 should
not be used in the conventional formalism, because for λ > 1
the electron–ion system collapses to a narrow band of small
polarons, whose description is outside the reach of the
conventional theory. This result is confirmed by numerical
simulation studies [95]. This finding is completely ignored
and the conventional formalism continues to be routinely used
irrespective of whether λ is small or large.

3.5. Inability to explain Chapnik’s rule

There is a simple empirical rule that can predict with
good accuracy whether or not a material is superconducting:
the sign of its Hall coefficient. The vast majority of
superconductors have positive Hall coefficient in the normal
state, indicating that the transport of current occurs through
holes rather than electrons [96–98]. The electron-doped
cuprate superconductors only become superconducting in the
doping and reduction regime where their Hall coefficient
changes sign from negative to positive [99, 100]. The
sign of the Hall coefficient is a far better predictor of
whether a material is or is not a superconductor than any
other normal state property [101], yet the conventional
BCS-electron–phonon theory has no explanation for this
observation. It would be of great interest to measure the
Hall coefficient of non-superconducting elements that become
superconducting under applied pressure, which should give
further evidence for this correlation between the character of
the normal state charge carriers and superconductivity.

3.6. Inability to explain the Tao effect

In a series of experiments beginning in 1999, Tao et al
found that millions of superconducting microparticles in
the presence of a strong electrostatic field aggregate into
balls of macroscopic dimensions [102–104]. No explanation
of this phenomenon exists within the conventional theory
of superconductivity. Initially, the finding was attributed to
special properties of high Tc cuprates, in particular, their
layered structure [102], however, subsequent experiments for
conventional superconducting materials all showed the same
behavior [103, 104].

The conventional theory of superconductivity predicts
that superconductors respond to applied electrostatic fields in
the same way as normal metals do [105, 106], by forming
chain-like structures. Hence Tao’s observation represents a
fundamental puzzle within the conventional understanding
of superconductivity, yet no explanation of the effect has
been proposed by defenders of the conventional theory
of superconductivity. The response of superconductors to

applied electric fields is as fundamental a question as their
response to applied magnetic fields.

3.7. Inability to explain the de Heer effect

In a series of experiments, de Heer and co-workers have
discovered that small niobium clusters at low temperatures
develop ferroelectric dipole moments [107–109]. They find
strong evidence that the electric dipole moment is associated
with pairing of valence electrons and mirrors superconducting
properties of the bulk material. Such behavior is unexpected
both for a normal metal as well as for a superconductor, and
suggest a fundamental inadequacy of the conventional theory
of superconductivity. The same behavior is found by de Heer
in alloy clusters of Nb and in clusters of other transition metals
that are superconducting in the bulk.

3.8. Inability to explain rotating superconductors

A superconducting body rotating with angular velocity Eω

develops a uniform magnetic field throughout its interior
given by [110, 111]

EB = −
2mec

e
Eω, (1)

where e and me are the charge and mass of the superfluid
charge carrier, respectively, and c is the speed of light. This
has been determined experimentally for both conventional
superconductors [112–114], heavy fermion [115] and high
Tc [116] superconductors. The associated magnetic moment
is termed the ‘London moment’.

What is remarkable about this observation is [117]:
(i) The measured magnetic field is always parallel, never
antiparallel to the angular velocity. This implies that the
superfluid charge carriers have negative charge, i.e. they are
electrons, not holes. This is despite the fact that the normal
state carriers in all these materials are holes. (ii) The mass
and the charge entering equation (1) correspond to the free
electron mass and charge, even for materials like heavy
fermion superconductors where the normal state effective
mass is extremely different from the free electron mass.
(iii) The magnetic field equation (1) is the same whether a
superconductor is put into rotation or a rotating normal metal
is cooled into the superconducting state.

The fact that it is the electron’s bare mass rather
than the effective mass, and the bare charge (negative)
rather than the effective charge (positive) that enter into
equation (1), is unexplained within the conventional theory
of superconductivity [117]. In particular, it implies that the
superfluid carriers ‘undress’ from their interaction with the
ionic lattice [118, 119]. Instead, the conventional theory
asserts that the carriers are tightly coupled to the lattice since
the origin of the interaction that leads to superconductivity is
precisely the interaction between the electrons and the ionic
lattice.

Furthermore, for the magnetic field to develop when a
rotating normal metal is cooled into the superconducting state,
the superfluid electrons near the surface need to slow down
in order to create the surface current that gives rise to the
magnetic field equation (1), and, negative charge needs to
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move inward to satisfy mechanical equilibrium [120, 121].
The conventional theory does not explain the origin of the
forces giving rise to these effects, characterized as ‘quite
absurd from the viewpoint of the perfect conductor concept’
by London [9].

3.9. Inability to explain the Meissner effect

The Meissner effect is the most fundamental property of
superconductors. When a superconductor is cooled in the
presence of a static magnetic field, a spontaneous electric
current near the surface of the superconductor develops that
nullifies the magnetic field in its interior [122]. The literature
on the conventional theory of superconductivity does not
ever address nor answer the following questions: (i) How do
electrons near the surface of the sample acquire the superfluid
velocity needed to screen the magnetic field in the interior? (ii)
How is angular momentum conserved in the process? These
are fundamental questions that relate to the very essence of
the phenomenon of superconductivity.

To the first question, a conventional superconductivity
theorist may answer that because the final state with
supercurrent flowing has lower free energy than the initial
state, the system will somehow get there. However, the
supercurrent is a macroscopic effect and it should be possible
to identify a macroscopic force that leads electrons near the
surface to start moving all in the same direction to give rise
to the required current. The conventional theorist may say3

that since the Meissner state has a lower free energy F , the
‘force’ on coordinate x is −dF/dx and no further explanation
is needed. However, this explanation is flawed.

Quite the contrary, there is an induced electric field
according to Faraday’s law that exerts an electric force on
the charge carriers in exactly the opposite direction to what
is required [123, 124]. The superconductor has to overcome
this azimuthal electric force with another force in the opposite
direction acting on the superfluid carriers. −dF/dx , with dx
in the azimuthal direction as required to generate the Meissner
current, is not a real, physical, force. The only forces in nature
that are relevant in this context (of course gravitational and
nuclear forces are irrelevant) are the Lorentz electromagnetic
force [120] and ‘quantum pressure’, the tendency of quantum
particles to lower their kinetic energy by radially expanding
their wavefunction [125]. Neither of these forces plays a role
in the Meissner effect according to the conventional theory of
superconductivity.

To answer the second question is even more difficult
within the conventional theory [124]. Because the
supercurrent in the final state carries mechanical angular
momentum, and because the total angular momentum in
the normal state is zero, there exists a ‘missing angular
momentum’ [123]. A conventional superconductivity theorist
may answer that the ionic lattice takes up the missing angular
momentum. However the conventional theory offers no
mechanism by which such an angular momentum transfer
between superfluid electrons and the ionic lattice would
take place [124, 126–128]. In particular, if the electrons
transfer the required angular momentum to the lattice through
scattering via impurities or phonons, there should be a

3 This is quoted from a referee’s comment.

clear way to describe this process since the heavy ions are
essentially classical objects. No such description has ever
been given within the conventional theory and in [123] it
is argued that it may be impossible within the conventional
theory.

3.10. Deviation from Occam’s razor

Occam’s razor is the philosophical principle that states
that the explanation of any phenomenon should make
as few assumptions as possible. Alternatively, that the
simplest solution to a problem is preferable to more
complicated solutions. However, as reviewed above, to
explain all superconductors known today one needs many
different mechanisms and fundamentally different physical
assumptions.

Why is this implausible? Because there are fundamental
characteristics of superconductors that are shared by all
of them, namely: the Meissner effect, the Tao effect,
the London moment and the existence of macroscopic
phase coherence (Josephson effect). These characteristics are
remarkable and qualitatively different from the properties
of non-superconducting matter. It would be remarkable if
nature had chosen to achieve these properties in materials
through many different physical mechanisms and qualitatively
different superconducting states. The progress of science
has shown again and again that true scientific advances in
understanding always simplify previously existing theories
and unify the description of seemingly different phenomena.

We can make a parallel here with atomic physics. The
spectra of atoms is very complicated and certainly cannot
be explained by a simple Balmer-like formula that works
for hydrogen only. However, we do not need a different
‘mechanism’ or theory to explain the atomic spectra of
alkali metals, transition metals, rare gases, etc. All can be
understood from the same fundamental principles that were
first understood in the context of the simplest atom, hydrogen.
Where is the ‘hydrogen atom’ of superconductivity?

4. An alternative to BCS

For the past 20 years co-workers and I have been
developing an alternative to BCS theory, the theory of hole
superconductivity [10, 129]. Essential aspects of the theory
are:

1. It applies to all superconducting materials, in contrast
to other alternative theories of superconductivity that
have been proposed for specific classes of materials.
A single material that is superconducting through
another mechanism would prove the theory of hole
superconductivity wrong [130, 131].

2. Electron–hole asymmetry is the key to superconductivity;
hole carriers in the normal state are necessary for
superconductivity.

3. Electron–phonon interaction does not cause
superconductivity; superconductivity is driven by a
purely electronic mechanism and is associated with
kinetic energy lowering [132].

4. Material characteristics favorable for high Tc are: (i)
transport in the normal state dominated by hole carriers,
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and (ii) excess negative charge in the substructures
(e.g. planes) where conduction occurs [133].

5. The gap function versus energy has a slope of universal
sign, giving rise to asymmetry in tunneling experiments
of universal sign [134].

6. Superconductors expel negative charge from their
interior toward the surface in the transition to super-
conductivity [135].

7. London electrodynamic equations are modified
[127, 136]. Macroscopic charge inhomogeneity and
a macroscopic outward pointing electric field exist in the
interior of superconductors. Applied electric fields are
screened by the superfluid over a London penetration
depth distance λL rather than over the much shorter
Thomas–Fermi distance.

8. A macroscopic spin current flows within a London
penetration depth of the surface of superconductors, a
kind of ‘zero point motion’ of the superfluid (Spin
Meissner effect) [126].

9. The spin–orbit interaction plays a fundamental role in
superconductivity [128].

10. Superfluid carriers reside in mesoscopic orbits of
radius 2λL and carry orbital angular momentum h̄/2
[126, 137].

The theory offers a compelling explanation for the
Meissner effect [120, 123, 126]: in essence, the azimuthal
force propelling the electrons in the Meissner current is the
magnetic Lorentz force acting on electrons moving radially
outward. The superconductor expels negative charge from its
interior toward the surface and the outflowing charge drags
the magnetic field lines with it as in a classical plasma
(Alfven’s theorem) [138] (even though the physics is highly
non-classical). The outward motion of charge is driven by
kinetic energy lowering and results in a macroscopically
inhomogeneous charge distribution.

The theory also offers compelling explanations for the
Tao effect [139], the puzzles of rotating superconductors
[120, 121], Chapnik’s rule [140] and the variation of Tc along
the elements in the transition metal series [141, 142]. The ‘soft
phonon’ story [30] and the propensity of superconductors
to be close to lattice instabilities [143], conventionally
understood as arising from strong electron–phonon
interactions, are more simply explained from the fact
that superconductors have nearly full bands and hence a
lot of electrons in antibonding states [144]. The same
principle predicts that non-superconducting materials at
ambient pressure that become superconducting under high
pressure [84, 85] necessarily develop structures with carriers
in nearly full bands [145], and explains qualitatively why
superconductivity is favored at high pressures: the externally
applied pressure counters the outward pressure exerted
by electrons occupying antibonding states, which would
otherwise render the system unstable. As Matthias famously
said [143], ‘From now on, I shall look for systems that should
exist, but won’t—unless one can persuade them’. The criteria
given in (4) above provide guidelines in the search for new
superconducting compounds, they explain why high Tc is
found in the cuprates and predict that high Tc will be found
in MgB2 and Fe–As compounds. They also predict [146]

(contrary to conventional theory [74–76]) that high Tc will
not be found in Li1−x BC because it has far less negative
charge in the planes than MgB2.

Examples of experiments that could provide key
evidence in support of this theory and against conventional
BCS theory are:

1. Detection of spontaneous macroscopic electrostatic fields
in or around superconductors, of magnitude comparable
with the magnetic critical field (Hc or Hc1) in cgs units.

2. Measurement of a macroscopic spin current in the ground
state of a superconductor, of the predicted magnitude,
namely carrier density the superfluid density and carrier
speed given by the speed of carriers in the critical charge
current of the superconductor.

3. Measurement of a much steeper plasmon dispersion
relation in the superconducting state than in the normal
state [136].

4. Detection of ionizing radiation emitted by a super-
conductor of large volume under non-equilibrium
conditions, of frequencies up to ω = 0.511 MeV h̄−1

[147].

As a historical footnote I point out that several elements
of this theory are related to preBCS-proposed explanations of
superconductivity that are not part of the conventional BCS
theory, namely: (i) Heisenberg [148] and others proposed that
currents exist in the ground state of superconductors, albeit
charge rather than spin currents; (ii) Born and Cheng [149]
proposed that superconductivity could only occur when the
Fermi surface is close to the edges of the Brillouin zone;
(iii) Slater [150] proposed that electrons in superconductors
reside in orbits of radius ∼137 lattice spacings; (iv)
Kronig [151] proposed that superconducting electrons do
not ‘see’ the periodic ionic potential [117, 118]; and (v)
Koch [152] proposed an explanation of the Meissner effect
based on a thermoelectric radial current of electrons flowing
from the warmer interior to the cooler exterior of a metal
becoming superconducting.

5. Discussion

This paper focused on BCS theory; however, it is clear that
more generally it may apply to all realms of contemporary
science, i.e. that the same factors at play in the BCS case
may be allowing for the preservation and growth of many
flawed scientific theories at the present time [153]. With the
growth and specialization of knowledge, incoming students
increasingly rely on ‘gatekeepers’ (professors, mentors,
established scientists, etc) to guide them into the world of
science. The gatekeepers have a vested interest in preserving
the status quo. A beginning scientist with a revolutionary
idea that could prove many established scientists wrong is
likely to be strongly discouraged from pursuing it, and if
she/he persisted would simply be denied entrance to the
profession by being unable to secure a job. By the time a
scientist is ‘established’ he or she has usually been sufficiently
conditioned to conform to the established truths.

For the case of BCS, it would be desirable that journal
editors look more favorably than they have up to now at
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papers suggesting inadequacies of BCS theory4, and keep
in mind the vested interests of referees that are likely to
write negative reports on such papers. To the extent that
such papers can be published in mainstream publications,
they will encourage physicists, the younger generation as
well as some of the long-time experts that may have started
having doubts about BCS in view of the recent experimental
discoveries, to consider alternatives to the conventional BCS
theory. It would also be desirable that funding agencies devote
at least a small fraction of resources to experimental and
theoretical work that calls into question the conventional BCS
theory, and that conference and workshop organizers consider
inviting speakers whose research questions the validity of
BCS theory for conventional superconductors rather than shun
such topics5.

The half-century old BCS theory has proven incapable of
ever predicting a high-temperature superconductor. It offers
no useful guidelines in the search for new superconducting
compounds. It has proven incapable of explaining the
superconductivity of ten families of compounds discovered
in the last 30 years. It cannot explain the Meissner effect
nor the Tao effect nor the de Heer effect nor Chapnik’s rule
nor rotating superconductors. The field of superconductivity
is in crisis [1]. It is high time to consider the possibility that
the lack of progress in understanding high Tc cuprates and
other ‘unconventional’ superconductors may be due to the
fact that ‘conventional’ superconductors are not understood
either. It is high time to seriously consider the possibility
that the BCS theory provides no real understanding of the
superconductivity of ‘conventional’ materials because it is
fundamentally flawed, and that it may be destined to be
overhauled just as other established scientific theories of the
past have been overhauled.
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