
Chapter 5

Chiral Dynamics

5.1 What is spontaneous symmetry breaking?

Symmetries and their breakings are important part of modern physics. Spacetime symmetry and its
supersymmetric extensions are the basis for building quantum field theories. Internal symmetries,
such as isospin (proton and neutron, up and down quark symmetry), flavor, color etc., form the
fundamental structure of the standard model. On the other hand, studying symmetry breakings is
as interesting as studying symmetries themselves. As far as we know, there are three ways to break
a symmetry: explicit breaking, spontaneous breaking, and finally anomalous breaking. In this part
of the lectures we will concern ourselves with the first two types of breakings of the so-called chiral
symmetry, the exact meaning of which will become clear later. We will come to the anomalous
symmetry breaking towards the end of the course.

In quantum mechnics, a symmetry of a hamiltonian is usually reflected in its energy spectrum.
For instance, the rotational symmetry of a three-dimensional system often leads to a 2ℓ + 1-fold
degeneracy of the spectrum. This standard realization of a symmetry is called Wigner-Weyl mode.
On the other hand, in the late 50’s Nambu and Goldstone discovered a new way through which a
symmetry of a system can manifest itself: spontaneous breaking of the symmetry. This realization
of a symmetry is called Nambu-Goldstone mode.

To understand the Nambu-Goldstone realization of a symmetry, let us recall a related problem
in statistical mechanics: second-order phase transitions. We have many examples of the second-
order phase transitions in which a continuous change of order parameters happens. Consider a piece
of magnetic material. Its hamiltonian is certainly rotationally symmetric and therefore normally
one would expect its ground state wave function is also rotationally symmetric. This apparently
is not the case below a certain critical temperature at which a spontaneous magnetization occurs.
The magnitization vector points to a certain direction in space, and hence the rotational symmetry
is lost. We say in this case that the rotational symmetry is spontaneously broken. Likewise, for
a conductor below a certain temperature, the electromagnetic U(1) symmetry is spontaneously
broken and the wavefunction of the Cooper pairs developes certain classical value.

A useful mathematical formulation of the SSB is the concept of the effective action. Let us
introduce this first.

Consider a scalar field theory with lagrangian density L(φ). We define the green’s function
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functional or generating functional Z(j) as

Z(j) =
∞
∑

i=0

in

n!

∫

d4x1 · · · d4xnj(x1) · · · j(xn)G(n)(x1, · · · , xn) (5.1)

where G(n)(x1, · · · , xn) = 〈0|Tφ(x1) · · · φ(xn)|0〉. In the path integral formulation, we have

Z(j) =

∫

[Dφ]ei
∫

d4x(L(x)+φ(x)j(x))

∫

[Dφ]ei
∫

d4xL(x)
. (5.2)

We define the connected green’s function G
(n)
c through

W (j) =
∞
∑

i=1

in

n!

∫

d4x1 · · · d4xnj(x1) · · · j(xn)G(n)
c (x1, · · · , xn) (5.3)

and eiW (j) = Z(j). In Feynman diagram expansion, the connected Green’s functions contain
diagrams with no disconnected parts. The physical significance of the −W is that it equals to the
time T times the ground state energy of the system TE(J). This is the case because J is turned
on gradually and the system reaches the ground state at t = 0. The evolution of the state has a
phase factor e−iET . Define classical field φ(x) through

φ(x) =
δW (j)

δj(x)
, (5.4)

from which one can solve j(x) as a functional of φ(x). Perform now the Legendre transformation ,

Γ(φ) =

(

W −
∫

d4xj(x)φ(x)

)

|j=j(φ) (5.5)

Then Γ(φ) is the generating functional for the one-particle irreducible Green’s functions Γ(n)(x1, · · · , xn),

Γ(φ) =
∑

n=1

1

n!

∫

d4x1 · · · d4xnΓ(n)(x1, · · · , xn)φ(x1) · · ·φ(xn) (5.6)

For example, Γ(2)(p) = iG2(p)
−1 = p2 −m2−Σ(p). Γ(φ) is also called the quantum effective action

for the following reason. Consider the minimum energy of the system under the constraint that
the expectation value of the field φ̂ must be φc. The solution is that it is equal to −Γ(φ)/T . This
not only can be proved through the variational approach, and is also obvious from the Legendre
transformation: The φc becomes the controlling variable in the thermodynamical study. In the
tree level approxiamtion, Γ(φ) =

∫

d4xL(φ). The expectation value of quantum field φ is clearly
an extreme of Γ because,

j(x) = −δΓ(φ)

δφ(x)
. (5.7)

Effective action can be computed through the shift of field in the lagrangian φ → φ + φc, and
calculating the 1PI contribution to the effective W .

There are two popular usage of the effective action formalism: First, the effective action contains
all the 1PI which are the target for renormalization study. The renormalization condition can
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easily expressed in terms of 1PI, like the mass of the particles and coupling constants. Moreover,
the symmetry of these 1PI can be expressed in terms of the Ward-Takahashi identities which can
be summarized in terms of a simple equation for the effective action. This equation can be used
to prove the Goldstone theorem. Second, the effective action can be used as a thermodynamic
function with natural variable φc which diagnoses the phase structure of the system. For instance,
according to Colemann-Weinberg, the natural phase of the massless scalar electrodynamics is the
Higgs phase in which the vector and scalar particles aquire mass through radiative corrections.
Another use of the effective action is in cosmology.

The spontanous symmetry breaking happens only if there is a degeneracy in the vacuum. This
degeneracy can arise from certain symmetry of the original lagrangian. Consider a symmetry
transformation of fields,

φi(x) → φ′i(x) =
∑

j

Lijφj(x) , (5.8)

here we have assumed multiple fields with i = 1, ..., n. If the action and measure are both invariant,
then the effective action is invariant under a similar transformation of the classical fields

Γ[φ] = Γ[Lφ] . (5.9)

As we mentioned before, the vaccum state is a solution φ̄ of −Γ[φ] at its minimum. If the solution
is invariant Lφ̄ = φ̄, i.e. the vacuum is invariant under the symmetry transformation, the vacuum
is unique. On the other hand, if Lφ̄ 6= φ̄, the solution is not. Then we have many degenerate vacua
which are all physically equivalent. By choosing a particular barφ as the true vaccum, we have a
spontaneous symmetry breaking.

According to the above discussion, the key condition for SSB is there are multiple, equivalent
vacua. Although it is easy to find ground state degeneracies in the classical systems, in quantum
systems it is difficult to have multiple vacuum. For instance, in a potential with a double well, the
ground state is a non-degenerate symmetrical state. In other words, the real vacuum is a linear
combination of the various classical vacua. The same thing happens for a rotationally symmetric
system in which the ground state has J = 0, i.e., all θ angles are equally probable.

There are special cases in quantum mechanics in which the ground state may be degenerate.
For instace, in an atom with a ground state J 6= 0, the state can be prepared in the eigenstates of
J2 and Jz. However, there is no SSB because the states of different Jz are not equivalent vacua in
the sense that they blong to the same Hilbert space and are easily connected through a transitions
operators. Therefore, the spontaneous symmetry breaking happens only if the volume of the system
is approaching infinity and the transition rate between the degenerate states goes to zero. In this
case, it turns out that the vacuum states are not representations of the symmetry generators.
Rather they are eigenstates of the conjugating coordinate operators and are superposition of states
with symmetry quantum numbers. Any perturbation which causes the transition between different
vacua have exponentially small matrix elements. On the other hand, the diagonal matrix elements
of the perturbation is much larger than the off-diagonal matrix elements. In other words, the
vacuum states are those with definite φ̄, or in the rotationally symmetric system, definite θ. So in
the limit of infinit volume, the states with definite φ̄ become the exact vacua.

It can be shows that with local hamiltonian and operators, different vacua obey the super-

selection rule. Assume the degenerate vacua are |vi〉 and

〈vi|vj〉 = δij (5.10)
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By considering the matrix element of 〈vi|A(~x)B(0)|vj〉 in the limit of ~x→ ∞, it can be shown

〈ui|A(0)|uj〉 = δijai . (5.11)

Therefore the local operators have no finite matrix elements between different vacuum states.

5.1.1 SSB and Space(-time) Dimensions

In a finite quantum mechanical system, there is no SSB. For discrete symmetry, such as Z2 symmetry
(σi → −σi) in the Ising model, it cannot be broken in one-dimensional (0+1) system. This is
known in 1938 to Peierls. But, it can be broken in two-dimensional (1+1) system. For example,
the Onsagar solution contains a spontaneous magnetization for a two-dimensional Ising model.

For continuous symmetry, it cannot be spontaneously broken in two-dimensional system. This is
called the Mermin-Wagner-Coleman theorem. For example, the classical Heisenberg model consists
of interactions of spins living on a n-dimensional sphere. The system has O(n) symmetry. This
model has spontaneous symmetry breaking only in 3D. To see the MWC theorem, let’s assume
there is a SSB in 2D. Then we have massless Goldstone bosons. The correlation of these massless
Goldstone bosons reads

〈0|φ(x)φ(0)|0〉 =

∫

d2k

2π
θ(k0)δ(k2)eikx =

∫ ∞

0

dk1

2πk1
cos(k1x1)eik

1x0

(5.12)

which is hopelessly infrared divergent. This strong fluctation will destroy any long-range order.
In a two-dimensional classical Heisenberg model, an disordered phase has as much weight as an
ordered one.

5.2 SSB of the continuous symmetry and Goldstone Theorem

In the case of the spontaneous breaking of a continuous symmetry, a theorem can be proved. The
theorem says that the spectrum of physical particles must contain one particle of zero mass and
spin for each broken symmetry generator. Those particles are called Goldstone bosons.

Consider an infinitesimal transformation

φi → φi + iǫa(t
aφ)i . (5.13)

The same transformation leaves the effective action invariant

∑

ij

∫

d4x
δΓ

δφi(x)
taijφj(x) = 0 . (5.14)

If we look for a translationally-invariant solution such that φ is a constant, then Γ = −V3V (φ),
where V3 is the 3-d volume and V (φ) is an effective potential in the usual sense. Then the spatial
integral is trivial and we have

∑

ij

∂V (φ)

∂φi
taijφj = 0 , (5.15)

This relation is true independent of φ. Differentiate the above equation with respect to φk and take
φ = φ̄ in a vacuum,

∂2V (φ)

∂ℓ∂i
(taφ̄)i = 0 (5.16)
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According to the definition of the effective potential, we have

∂2V (φ)

∂φℓ∂φi
= ∆−1

ℓi (0) , (5.17)

which is the inverse of the propagators at zero momentum. Then the equation

∆ℓi(0)(t
aφ̄)i = 0 (5.18)

is an eigenvalue equation. For a particular choice of φ, if there are n non-zero eigenvectors taφ̄, then
there are n zero eigenvalues of ∆−1

ℓi which correspond to n massless particles—Goldstone bosons.
Example. Consider O(N) theory

L =
1

2
∂µφi∂µφi −

1

2
M2φiφi −

g

4
(φiφi)

2 (5.19)

In the tree approximation Γ = V3L, we have

V =
1

2
M2φiφi +

g

4
(φiφi)

2 (5.20)

If M2 is negative, we have
φ̄iφ̄i = −M2/g (5.21)

We can choose a solution as φ̄i = (0, ..., 0,
√

M2/g). There are n − 1 generators which do not
annihilate this state, therefore there n-1 goldstone bosons. The solution still has O(N-1) symmetry.
The mass matrix is

M2
ij =

∂2V (φ)

∂φi∂φj
|φ=φ̄

= 2gφ̄iφ̄j = (0, ..., 0, 2|M2 |) (5.22)

Thus the last particle now has mass
√

2M .
There are N(N − 1)/2 generators for O(N) group. After SSB, N − 1 generators no longer

annihilate the vacuum. But the remainder (N−1)(N −2)/2 does. So the system still has O(N−1)
symmetry. The N − 1 broken generators yield N − 1 Goldstone bosons.

Consider a symmety current Jµ
a corresponding to a particular broken generator ta which has an

associate Goldstone boson a. Ja acting on the vacuum will not annihilate it, rather it will create
a Goldstone boson state

〈Ba|Jµ
a (0)|0〉 = iFap

µ (5.23)

where Fa is called the decay constant. It turns out that Fa is related to the vacuum expectation
value (VEV) of φ and is an important parameter which characterizes the spontaneous symmetry
breaking. More generally, we have

〈Bb|Jµ
a (0)|0〉 = iFabp

µ (5.24)

The interaction between the zero-momentum Goldstone bosons can be deduced from the effec-
tive action immediately. Expand the effective action as a Taylor series in φi − φ̄i =

∑

a Zaiπa + ...
and using the result that

Zai =
∑

b

F−1
ab (itbφ̄)i (5.25)
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we have the effective classical hamiltonian

Heff =
∑

N

1

N !
ga1a2...aN

πa1
· · · πaN

(5.26)

where

ga1a2...aN
=

∑

Za1i1 · · ·ZaN iN

∂NV (φ)

∂φi1 · · ·φiN

(5.27)

From equations derived earlier, it is easy to see that the amplitude for a zero-momentum Goldstone
boson disappearing into the vacuum is zero. The amplitude for a zero-momentum goldstone boson
to make transition to another boson is zero. Finally, the amplitude for three massless Goldstone
bosons to make transtion is zero. This is in fact true to all orders.

Let us consider now the interactions of Goldstone bosons with other massive particles. The
following approach assumes exact symmetry. To calculate the process of α→ β+Ba, we start from
the matrix element with the corresponding conserved current

〈β|Jµ
a |α〉 . (5.28)

The current supports a momentum transfer q = pα − pβ. Clearly the most important contribution
to matrix element comes from the Goldstone boson pole which has the following structure

iFqµMβB,α

q2
(5.29)

where we have calculated the Goldstone boson diagram with a pole 1/q2 and M is a matrix element
of our interest. There is also regular contribution to the current matrix element without the
Goldstone bosons Nµ

Jβ,α. The current conservation require that

Mβ+B,α =
i

F
qµN

µ
β+J,α . (5.30)

This is a form of Ward identity. If Nµ has no pole, then the process of emitting a Goldstone boson
vanishes as q → 0. This is called the Adler zero.

The most important contribution in the regular term comes from the Feynman diagrams in
which J acting on the external line. In this case, there is a heavy-particle pole which enhance
the contribution. The pole contribution can often be calculated or extracted from experimental
data, from example, the nucleon pole contribution is related to the neutron beta decay constant
gA. Knowing gA, we can calculate the meson-nucleon interaction as we shall do in the next section.

The above result can also be derived from a theory with explicit breaking of the symmetry. This
approach is called PCAC. In this case, the masses of the Goldstone bosons are not exactly zero,
but finite. They are called pseudo-Goldstone bosons. Let us consider the SSB of an approximate
symmetry.

In this case, the vacuum is no longer degenerate, and strictly speaking, there is no spontaneous
symmetry breaking. This is very much like a magnet in an external magnetic field (first order phase
transition). In the following we would like to find the constraint on the vacuum from the symmetry
breaking effects; we also want to derive the masses of the pseudo-Goldstone bosons.
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Now the effective potential has two terms V (φ) = V0(φ)+V1(φ). The real solution is φ = φ0+φ1

which is no longer degenerate. The condition on φ0 and φ1 is contained in the expanded version of
∂V (φ)/∂φi|φ=φ̄ = 0

∂2V0

∂φi∂φj
|φ=φ0

φ1j +
∂V1

∂φi
= 0 (5.31)

Using the equation we found early, we have

(taφ0)i
∂V1(φ0)

∂φi
= 0 (5.32)

The above equations says if we do not start with a proper φ0, φ1 cannot be regarded as a per-
turbation. This is also called the vacuum alignment condition which forces the direction of the
symmetry breaking by the vacuum into some sort of alignment with the symmetry breaking term
in the hamiltonian.

The mass matrix is

M2
ab =

∑

ij

ZaiZbj
∂2V

∂φi∂φj
(5.33)

which vanish to the zeroth order. To the frist order, we find

M2
ab = −

∑

cd

F−1
ac F

−1
bd 〈0|[Ta, [Tb,H1]]|0〉 (5.34)

where Ta is the quantum generator of the symmetry group.

5.3 pion as goldstone boson, PCAC

One of the most interesting examples of SSB is exhibited by fundamental strong interactions: quan-
tum chromodynamics. Consider the QCD lagrangian. The only parameters with mass dimension
are quark masses. For ordinary matter, we just consider up and down quark flavors. The QCD scale
ΛQCD is about 200 MeV, which is much larger than the up and down quark masses (5 to 9 MeV).
Therefore, to a good approximation, we can negelect the quark masses in the QCD lagrangian.
Then the QCD lagrangian has the U(2)×U(2) chiral symmetry.

Recall the chiral projection operators PL = (1 − γ5)/2 and PR = (1 + γ5)/2, where γ5 is diag
(-1,1), which project out the left-handed and right-handed quark fields,

ψL,R = PL,Rψ . (5.35)

Then the QCD lagrangian we can be written in terms of

L = ψL(i 6D)ψL + ψR(i 6D)ψR − 1

4
FµνaFµνa . (5.36)

where ψ = (u, d) is a column vector in the flavor space. The lagrangian is invariant under the
following transformations

ψL → ULψL ,

ψR → URψR , (5.37)
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where UL,R are unitary matrices in the two-dimensional flavor space. Since U(2)=U(1)× SU(2), we
have two U(1) symmtries. From now on, we focus on the two SU(2) symmetries, leaving the U(1)
symmetries to later discussion.

According to Noether’s theorem, the SUL(2)×SUR(2) chiral symmetry leads to the the following
conserved currents ,

jµL,R = ψ̄L,Rt
aγµψL,R , (5.38)

where ta = τa/2 and τa is the usual Pauli matrices. We have the vector and axial vector currents
from the linear combinations,

jaµ
V = ψ̄taγµψ = jµL + jµR

jbµA = ψ̄taγµγ5ψ = jµR − jµL . (5.39)

From the above currents, we can define the charges Qa and Qa5 in the usual way. And it is easy to
see that the charges obey the following algebra:

[Qa, Qb] = iǫabcQc; [Q5a, Qb] = iǫabcQ5c; [Q5a, Q5b] = iǫabcQc . (5.40)

From the above, we find that Qa forms a subgroup of the chiral symmetry group and is called
the isospin group. From the experimental hadron spectrum, we find that the isospin subgroup
is realized in Wigner-Weyl mode. For instance, the pion comes in with three charge states and
near degenerate mass. The proton and neutron also have nearly degenerate mass. However, the
spectrum does not show the full chiral symmetry. For instance, the three pion states do not form
an irreducible reps of the chiral group. Together a scalar particle σ, they form (1/2,1/2) reps.
Therefore, if the chiral symmetry is realized fully in Wigner-Weyl mode, there must be a scalar
particle with the same mass as the pion. We do not see such a particle in Nature.

Thus, the chiral group SUL(2) × SU(2)R must break spontaneously to the isospin subgroup
SU(2). Thus the QCD vacuum |0〉 satisfies

Qa|0〉 = 0, Q5a|0〉 6= 0 . (5.41)

According to Goldstone’s theorem, there are three massless spin-0 pseudo-scalar bosons. They are
pseudoscalars because Q5a changes sign under parity transformation.

Of course, in the real world, we don’t have massless pseudoscalars. We have pions. The pion
masses are indeed much smaller than a typical hadron mass. For instance, the rho meson has mass
770 MeV. The nucleon mass is 940 MeV. And the pion mass is 140 MeV. The pions are called
pseudo-Goldstone bosons because the chiral symmetry is not exact. It is broken by the finite up
and down quark masses.

H1 = muūu+mdd̄d . (5.42)

If we write u in terms of left and right-handed fields, we have

H1 = mu(ūLuR + ūRuL) +md(d̄LdR + d̄RdL) . (5.43)

Therefore the left and right-handed fields are now coupled through the mass terms. The mass
operator transforms as the components of (1/2,1/2) representations of the chiral group.

Using the relation we found earlier, we can calculate the pion mass,

m2
π = −(mu +md)〈0|ūu+ d̄d|0〉/f2

π (5.44)
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where 〈0|ūu+ d̄d|0〉 is the chiral condensate. Since ūu is a part of the representation (1/2, 1/2), it
vacuum expectation value vanishes ordinarily because of the chiral symmetry. However, it has a
vacuum expectation value because of the vacuum is no longer chirally symmetric (chiral singlet).
In fact, the vacuum contains all (k, k) type of representations because the vacuum has zero isospin.
Any chiral tensor of type (k, k) has non-zero vacuum expectation value.

The pion decay constant fπ is defined from

〈0|jµa (x)|πb〉 = ipµδabfπe
−ip·x . (5.45)

It can be measured from the semi-leptonic weak decay π+ → µ+νµ rate

Γ =
G2

Fm
2
µf

2
π(m2

π −m2
µ)2

4πm3
π

cos2 θC . (5.46)

From the experimental data, one finds,

fπ = 93 MeV . (5.47)

As we shall see, fπ normaly appears with a factor of 4π and 4πfπ is about 1 GeV, the hadron mass
scale.

Let us discuss the interaction between pion and nucleon systems. We first focus on the pion-
nucleon interaction. To do this we start with the following nucleon matrix element

〈p′|jµ5a|p〉 = U(p′)ta[gA(q2)γµγ5 + gp(q
2)qµγ5]U(p) , (5.48)

where q = p − p′ and U’s are the on-shell Dirac spinors of the nucleon states. Multiplying qµ to
both sides of the equation and using current conservation and Direc equation (6 p −M)U(p) = 0,
we have

−2MgA(q2) + q2gP (q2) = 0 . (5.49)

gA(q2) in the limit of q2 → 0 is just the neutron decay constant (the axial current is part of the
weak interaction current) and has been measured accurately

gA(0) = 1.257 . (5.50)

Thus according to the above equation gP (q) must have a pole in 1/q2. This pole corresponds to the
intermediate massless pion contribution to the interaction between the the axial current and the
nucleon. If we introduce the pion-nucleon interaction vertex gπNN N̄iγ5τ

aNπa, the contribution to
the axial current matrix element is

i2gπNNUγ5τ
aU

(

i

q2

)

(ifπq
µ) . (5.51)

In the limit of q2 → 0, we find the following celebrated Goldberger-Treiman relation

gA(0)M = gπNNfπ . (5.52)

Using gπNN from experimental data (g2
πNN/4π = 14.6), we find that the above relation is obeyed

at better than 10% level.
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According to the recipe derived from the previous section, we calculate the interactions between
the soft pion and the nucleon system as follows. First use a vertex iqµ/fπ connecting the Goldstone
boson to the axial current. Then the non-singular part of the axial current interaction with the nu-
cleon is approximated through the gAγ

µγ5 vertex. This yields the effective pion-nucleon interaction
vertex i 6qγ5/fπ. This is a peudo-vector interaction.

Another way to study the interactions among the pions and with other particles is through
what is called the PCAC (partially-conserved axial-vector current), in which we assume there is
a small explicit symmetry breaking through nonvanishing quark masses. Applying the derivative
operator to the current matrix between the vacuum and the pion, we have

〈0|∂µj
µ
a |πb〉 = m2

πδabfπ . (5.53)

The right-hand side is proportional to the pion mass squared. This motivates the assumption that

∂µjaµ = m2
πfππ

a , (5.54)

where πa is a pion interpolating field. Of course, the above relation is in some sense empty because
any pseudo-scalar operator can be used as an interpolating field for pion. The content of the
PCAC is that axial current at zero momentum transfer (this is the place where we know how to
calculate the matrix element) is dominated by the pion contribution at q2 = m2

π. In other words,
the variation of the matrix elements of the axial current from q2 = 0 to m2

π is smooth. In fact, we
can derive the Goldberger-Treiman relation using PCAC and find now one has to use gA(0) instead
of gA(m2

π). The content of PCAC is that the variation of this small. Therefore, when the pion
energy is small, we can calculate using PCAC.

PCAC can be used to study the multi-pion interactions. For instance, consider the amplitude

T ab
µν =

∫

d4xeiqx〈H(p2)|TAa
µ(x)Ab

ν(0)|H(p1)〉 (5.55)

Applying differentical operators to the above quantity, we derive a Ward indentity. Using PCAC,
one can calculate the pion-nucleon scattering amplitude at low-energy. However, it turns out that
it is much easier to get the predictions using the low-energy effective theory.

5.4 the linear σ model

Many of the essential physics exhibited in spontaneous breaking of the chiral symmetry can be
illustrated by a simple phenomenological model. This is very similar to the Ginsburg-Landau
theory for second-order phase transitions. This model is first introduced by Gell-Mann and Levy,
and is called the linear σ model. The lagrangian is,

L = LS + cσ ,

LS = ψ̄[i 6∂ + g(σ + i~π · τγ5)]ψ +
1

2
[(∂~π)2 + (∂σ)2]

− µ2

2
(σ2 + ~π2) − λ

4
(σ2 + ~π2)2 , (5.56)

where (σ, ~π) forms a (1/2,1/2) representation of the chiral group and ψ, the nucleon (proton and
neutron) field, form the (1/2,0)+(0,1/2) representation. In the absence of the symmetry breaking
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term cσ, the lagrangian is clearly symmetric under the chiral SUL(2)×SUR(2), and the correspond-
ing vector and axial vector current is

jµa = ψ̄γµ τ
a

2
ψ + ~π × ∂µ~π

jµ5a = ψ̄γµγ5
τa

2
ψ + (σ∂µπa − πa∂µσ) (5.57)

After introducing the symmetry breaking term, the axial vector current is no longer conserved. We
have instead

∂µAa
µ = −cπa (5.58)

according to the equation of motion. The above has the form of PCAC.
When µ2 < 0, the spontaneous symmetry breaking happens. The potential has its minimum

not at πa = σ = 0 but at π2 + σ2 = v2, where v2 = −µ2/λ. Thus, the shape of the potential is a
Mexican hat. There are infinite many degenerate minima. We need to choose a particular direction
as our vacuum state. If we want to keep the isospin group intact, we take

〈σ〉 = v . (5.59)

The pion excitation corresponds to the motion along the minima and therefore has zero energy
unless the wavelength is finite. The σ mass corresponds to the curvature in the σ direction and is
2λv2. The nucleon also get its mass from spontaneous symmetry breaking and is −gv. From the
PCAC, we find that fπ = −v.

When the symmetry breaking term is introduced, the Mexican hat is tilted. In this case, the
minimum of the potential is unique and the pion excitations do have mass.

5.5 effective field theory: Chiral Perturbation theory with pions

Current algebra and Ward identity approach were popular in the 60’s for calculating Goldstone
boson interactions. However, they are tedious. In 1967, Weinberg used the nonlinearly-transformed
effective lagrangian to study the Goldstone boson interactions. This is the precursor of effective
field theory approach which is popular today.

The key observation is that when the Goldstone boson energy is small, the coupling is weak.
Therefore their interactions must be calculable in perturbation theory. However, in the strong
interactions, we also have the usual QCD or hadron (rho meson or nucleon) mass scale. The
physics at these two different scales have to be separated before one can apply chiral perturbation
theory. The physics at QCD or hadron mass scale can be parametrized in terms of various low-enegy
constants which can be determined from experimental data.

Through a particular model, we demonstrate the separation of physics through nonlinear trans-
formations. We first perform a symmetry transformation at every point of the spacetime to get
rid of the Goldstone boson degrees of freedom. We then re-introduce them through the spacetime-
dependent symmetry transformation. When the Goldstone-boson fields are constant, the transfor-
mation is the usual chiral tranformation; and the Goldstone boson fields disappear. Therefore, in
the new lagrangian, the Goldstone boson interaction must have derivative-type interactions.

Consider the linear sigma model. Let us introduce a (1/2,1/2) 2 × 2 matrix

U = σ + i~π · τ (5.60)



92 CHAPTER 5. CHIRAL DYNAMICS

Under the chiral transformation, we have

U → ULUU
†
R (5.61)

We can write the linear sigma model as

L =
1

4
Tr[∂µU∂

µU †] − µ2

4
Tr[UU †] − λ

16

(

Tr[UU †]
)2

(5.62)

We parametrize the chiral transformation in the following form

UL = ei(θ
a

L
τa/2), θa

L = θa
V + θa

A

UR = ei(θ
a

R
τa/2), θa

R = θa
V − θa

A . (5.63)

If we rotate away the Goldstone bosons, we have U =
√
π2 + σ2. We reintroduce back the goldstone

boson by parametrizing the U including the axial transformation parameters,

U = σei~π
a(x)·τa/fπ (5.64)

where πa = fπθ
a
A is now the Goldstone boson field. For the convenience, we call the exponential

factor Σ.
Now substituting U = σΣ into the original lagrangian, we get,

L =
1

2
∂µσ∂

µσ +
1

4
σ2Tr[∂µΣ∂µΣ†] − 1

2
µ2σ2 − λ

4
σ4 . (5.65)

Now the Goldstone boson fields contain derivatives and therefore the above lagrangian will pro-
duce appropriate Goldstone boson interactions. Since the σ particle has a typical hadronic mass,
its effects can be integrated out completely and the σ is then replaced by its expectation value.
Therefore, the effective intereaction lagrangian for pion is just

L(2)
ππ =

f2

4
Tr

[

∂µΣ∂µΣ†
]

(5.66)

The above lagrangian is sometimes called the nonlinear sigma model. One important point is
that the above low-energy lagrangian is independent of any specific model that one starts with.
The difference between models are the high momentum scale physics which we don’t know how to
capture any way. In this view, one shall be able to get the above effective low-energy lagrangian
without any specific theory.

In fact at low-energy, the only object we can work with is Σ and its derivatives. Thus we can
write done the interactions with increasing order of complication. For instance terms with four
derivatives are

L(4)
ππ = L1

(

Tr[∂µΣ∂µΣ†]
)2

+ L2Tr[∂µΣ∂νΣ
†]Tr[∂µΣ∂νΣ†] + L3Tr

[

∂µΣ∂µΣ†∂νΣ∂νΣ
†
]

+ ... (5.67)

If all momentum are order of Q which is much smaller than the hadron mass scale, we can count
the power of Q from a particular Feymnan diagrams. Consider an arbitrary graph with Vi number
of vertices of type i which has di derivatives, with L loops and with I internal pion lines, the Q
power is just

ν =
∑

i

Vidi − 2I + 4L (5.68)
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Using L = I − ∑

i Vi + 1, we have

ν =
∑

i

Vi(di − 2) + 2L+ 2 . (5.69)

Therefore the lowest power of Q in any pion process is 2.
We can use the above leading order lagrangian to calculate the interactions between the pions.

Expand in 1/fπ to to the second order, we have

L(2)
ππ =

1

2
(∂µ~π)2 +

1

6f2
π

[(∂µ~π · ~π)2 − ~π2(∂µ~π)2] + ... (5.70)

The second term can be used to calculate the S-matrix element between pion scattering. Assume
the incoming pions with momenta pA and pB and isospin indices a and b and the outgoing pions
with momenta pC and pD and isospin indices c and d. We have the following leading-order invariant
amplitude (S = 1 − iM),

M = −f−2
π (δabδcds+ δacδbdt+ δadδbcu) (5.71)

where s = (pA + pb)
2, t = (pA − pC)2 and u = (pA − pD)2 are called Mandelstam variables.

5.5.1 Scalar and Pseudoscalar Sources

We can include the quark mass effects at this order. The quark mass term transforms like (1/2, 1/2)
under chiral transformations. In general, let us introduce s and p source in the QCD lagrangian

Lsp = −ψ̄s(x)ψ + ψ̄iγ5p(x)ψ

= −ψ̄R(s + ip)ψL − ψ̄L(s− ip)ψR (5.72)

Call s− ip = χ and s+ ip = χ†. Then the interaction is invariant if

χ→ LχR; χ† → Rχ†L† (5.73)

Without the p source, χ ∼ χ† ∼ s ∼ mq, which counts as second order in momentum. The effective
lagrangian then contain χ as a O(p2) external source. The lowest order is

L(2m)
ππ = BTr(Σχ† + Σ†χ) . (5.74)

When expanded to the leading order, the above gives the pion mass contribution if B = f2
π/4 and

χ = m2
π. The next-order contribution is

m2
π

24f2
π

(~π2)2 , (5.75)

which contributes to the π scattering as −m2
π/(3f

2
π)(δabδcd +δacδbd +δadδbc). The Q counting index

now becomes ν =
∑

i Vi(di +2mi−2)+2L+2 where mi is the number of insertions of quark masses.
Combining the above contribution, the pion scattering invariant amplitude becomes

M = −f−2
π

(

δabδcd(s −m2
π) + δacδbd(t−m2

π) + δadδbc(u−m2
π)

)

. (5.76)
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At the threshold where s = 4m2
π, t = u = 0, we have

M = −m2
πf

−2
π [3δabδcd − δacδbd − δadδbc] . (5.77)

The scattering amplitude f = −M/8π
√
s which is the scattering length a at low-energy (weinberg’s

definition, differing from Landau’s by a minus sign). The scattering length in the T = 0 channel
is a0 = 7mπ/32πf

2
π = 0.16m−1

π because of the wave function δabδcd/3, and in the T = 2channel
a2 = −2mπ/32πf

2
π = −0.046m−1

π with wave function (δacδbd + δadδbc − 2/3δabδcd)/2. The extra
factor of 1/2 comes from the identity of two bosons. [The positive scattering length corresponds
to repulsive interaction and negative one to attractive intereaction.] The above numbers can be
compared to the experimental data a0 = .26± 0.5 and a2 = −0.028± 0.012 from π+N → 2π+N
and K → 2π + e+ ν.

To the next-order in pion momenta, we can calculate the one-loop contribution from L
(2)
ππ . The

contribution is divergent. The divergences can be cancelled by the high-order counter terms. The
result is

M = −δabδcd
16f4

π

[ −1

2π2
s2 ln

(

s

µ2

)

− 1

12π2
(u2 − s2 + 3t2) ln

(−t
µ2

)

− 1

12π2
(t2 − s2 + 3u2) ln

(−u
µ2

)

− 1

2
c1s

2 − 1

4
c2(t

2 + u2)

]

+ crossing (5.78)

where c1 and c2 are constants which must be determined from experimental data. In fact, there
are also pion mass contribution at this order which we will not go into.

The p4-order mass term include the following

L4Tr(DµΣ†DµΣ)Tr(χ†Σ + χΣ†) + L5Tr(DµΣ†DµΣ)(χ†Σ + χΣ†)

+L6(Tr(χ†Σ + χΣ†))2 + L7(Tr(χ†Σ − χΣ†))2

+L8Tr(χ†Σχ†Σ + χΣ†χΣ†) +H2Tr(χ†χ) (5.79)

where H2 is pointless because there is no meson depedence.

5.5.2 Electromagnetic and Axial Interactions

When there are electromagnetic and weak interactions with the Goldstone boson system, we need
to construct a gauge theory in which the effective theory is gauge invariant under gauge transfor-
mations. Introduce the the following coupling the QCD lagrangian

L = ψ̄(γµvµ(x) + γµγ5aµ(x))ψ

= ψ̄Lγ
µ(vµ − aµ)ψL + ψ̄Rγ

µ(vµ + aµ)ψR (5.80)

If vµ and aµ are gauge fields, under gauge transformation, they must transform in the following
way,

vµ − aµ → L(vµ − aµ)L† + iL∂µL
†

vµ + aµ → R(vµ − aµ)R† + iR∂µR
† (5.81)

The above equation means that these gauge fields have to appear together with Σ in the following
form

DµΣ = ∂µΣ − i(v − a)µΣ + iΣ(v + a)µ (5.82)
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Then all the partial derivatives will be replaced by the above covariant derivatives.
For example, consider the electromagnetic interaction of the pions. In this case, we replace

vµ = −ie(τ3/2 + 1/6)Aµ where e is the charge of a proton and τ3 is the isospin and 1/6 is the
hypercharge. Then the partial derivative becomes,

DµΣ = ∂µΣ + ieAµ[
τ3
2
,Σ] (5.83)

The resulting coupling with the isospin current of the pion in the leading order,

Jµ = (~π × ∂µ~π) (5.84)

The leading order Feynman rule is
−iǫa3b(q1 + q2) (5.85)

where a and q1 are for the incoming pion, and b and q2 for outgoing pion. The four-pion one-photon
coupling is zero. The two-pion and two photon coupling is

2ie2gµν(δab − δa3δb3) (5.86)

Another example is the pion coupling with axial vector source. the leading vertex is

fπδ
abkµ (5.87)

And the coupling with three pions is
... (5.88)

Moreover, at p4 order, we have additional terms from guage fields

L9(−iTr(FL
µνD

µΣDνΣ†) − iTr(FR
µνD

µΣ†DνΣ))

L10Tr(Σ†FL
µνΣFRµν +H1Tr(FR

µνF
Rµν + FL

µνF
Lµν) . (5.89)

All the parameters can be determined by experimental data. For instance, L1 = 0.4 ± 0.3, L2 =
1.35 ± 0.3, L3 = −3.5 ± 1.1, L4 = −0.3 ± 0.5, L5 = 1.4 ± 0.5, L6 = −0.2 ± 0.3, L7 = −0.4 ± 0.2,
L8 = 0.9 ± 0.3, L9 = 6.9 ± 0.7, and L10 = −5.5 ± 0.7. All have the unit of 10−3.

5.6 Banks-Casher Formula and Vafa-Witten Theorem

How does the chiral symmetry breaking happen microscopically? For many years, physcists have
relied on models to understand this. For instance, the Nambu-Jona-Lasinio model has been used
to describe what drives the spontaneous symmetry breaking, much like the theories for supercon-
ductivity. However, in the context of QCD, our present understanding of the SSB comes from the
Banks-Casher formula.

Before we discuss this formula, it is useful to have an introduction to formulation of QCD in
Euclidean space. The Euclidean formulation has the advantage that many path integral expressions
become real and positive definite. We introduce x4 = ix0, and p4 = ip0, and so the Minkowski
invariant xp becomes −∑4

i=1(xipi), a Euclidean invariant. We also introduce A4 = iA0 and the
Lorentz condition becomes,

∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3
+
∂A4

∂x4
= 0 . (5.90)
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The electric field ~E in the Euclidean space is the imaginary of that in the Minkowski space and so
E2 → −E2, and FµνFµν = −2(E2 − B2) → 2(B2 + E2) = FµνFµν . We also define the Euclidean
version of the γ matrix with γE

4 = γ0 and γE
i = −iγi and the commutators now become

{γE
µ , γ

E
ν } = 2δµν (5.91)

The new γ matrices are hermitian. The QCD lagrangian is now

LQCD = −
[

ψ(x)(γµDµ +M)ψ(x) +
1

4
FµνFµν

]

(5.92)

Notice that γµDµ is now an antihermitian operator. We can define the Euclidean L to absorb the
minus sign.

Consider now the exponential factor exp(iS) in the path integral. After rotation, the integral
∫

d4x becomes −i
∫

d4x. The −i here cancels the i in front of the iS and define the Eulidean action
as

SE = −
∫

d4xL (5.93)

Therefore the integration meansure becomes exp(−SE)
Let us see how the spontaneous symmetry breaking takes place in QCD. To this goal, we need

to introduce an explicit breaking of the symmetry. For example, we give a small mass to quarks.
Consider the expectation value of 〈ūu〉. We write

〈uu〉 = −
∫

1

V4
d4x〈u(x)ū(x)〉

= −
∫

[DA]e−SY M Det(6D +M)
1

ZV4
Tr[

1

6D +mu
] . (5.94)

where Tr is over spatial, color, and spin indices. Now consider the eigenstates of 6D. Because it is
an anti-hermitian operator, we have

6D|λ〉 = iλ|λ〉 , (5.95)

where λ is real. The different |λ〉 are orthogonal and therefore we have

Tr[
1

6D +mu
] =

∑

i

1

iλi +mu
. (5.96)

On the other hand, we have Tr(D +M) = Tr(−D +M) because (γ5)2 = 1. We get then

Tr
1

D +M
=

∑

i

[
1

iλi +mu
+

1

−iλi +mu
] =

∑

i

mu

m2
u + λ2

i

(5.97)

Intrduce now a δ(λ− λi) and integration over λ. We have then

〈ūu〉 = −
∫

dλρ(λ)
mu

m2
u + λ2

(5.98)

where

ρ(λ) =
1

ZV4

∫

[DA] exp(−SY M )Det(6D +M)
∑

i

2δ(λ − λi) (5.99)
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Before one takes the limit of V → ∞, there is no λ = 0 and when mu → 0, the condenstate
vanishes. However, in the limit of V → ∞, ρ develops a density at λ = 0, in fact, we find in the
limit of mu → 0+, we have

〈ūu〉 = −πρ(0) (5.100)

This is the Cashier-Banks formula which says when there is a spontaneous symmetry breaking, the
quark energy-level has non-zero density at λ = 0. If mu → 0−, then condestate has a positive sign.
In any case, mq〈0|ūu|0〉 is negative.

By studyiny the instantons, one finds the near zero eigenstates come from the so-called instan-
tons, and their interactions.

It can be shown that in QCD with three light quark flavors, the chiral symmetry must be spon-
taneously broken. This can be done after the discussion of t’ Hooft anomaly matching. For QCD
with two light flavors, the answer is not so clear although the experimental evidence indicates that
the spontaneous chiral symmetry breaking does happen. On the other hand, certain symmetries in
theories like QCD cannot be spontaneously broken. In this section, we discussed the Vafa-Witten
theorems which says that the vector symmetry in the massive QCD-like theory cannot be broken
spontaneously. Moreover, the parity in QCD cannot be broken spontaneously eithers. Both results
sometimes are called Vafa-Witten theorems.

Let us consider the expectation value of the quark fields

〈TψαN iN (xN ) · · ·ψα1i1(x1)ψ̄β1j1(y1) · · · ψ̄βN jN
(yN )〉

=
1

Z
[DA]Det(6D +M) exp(−SY M )

[

(6D +M)−1
x1α1i1;y1β1j1

· · · (6D +M)−1
xN αN iN ;yNβN jN

+ perm.
]

(5.101)

where perm. means N! terms come from different contraction of the quark fields with their conjuga-
tors. The Green’s function above has manifest SU(N) symmetry if the quark masses are degenerate.
However, this is not the point. The real point of proofing that there is no spontaneous breaking of
the vector symmetry is to show when an external violation of the symmetry is introduced, it does
not induces a sigular response from the system.

What one has to show is that the Green’s function is bounded so that when a symmetric
breaking happens. In fact, it can be shown that

G < N ![
∑

i

1

|mi|
N

(5.102)

Therefore when the symmetry term δM is not zero, the induces change in G is still linear in δM .
Therefore SSB never happens here.

Vafa and Witten has also show that the parity cannot be broken spontaneously in the vector-
like gauge theory like QCD. What does it mean by SSB of parity? Although the lagrangian is
invariant under parity but the vacuum state |0〉 = α|+〉+β|−〉 is not an eigenstate of parity. Then
it is easy to show that |0′〉 = α|+〉 − β|−〉 is also a possible vacuum state. Using orthogonality
condition, we determine |α|2 = 1/2, |β|2 = 1/2. So we have two degenerate vacua. An observable
effect is that a parity-odd (equivalent of a non-singlet) operator Ô (POP−1 = −Ô) now has a
non-zero expectation value in the vacua: 〈0|Ô|0〉 6= 0 (vaccum condensate). The expectation values
in |0〉 and |0′〉, however, differs by a minus sign. How does one selected the right vacuum in the
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path integral formulation? This is done by coaching the vacuum. [For quantities like ground state
energy which are singlet operator, all vacuua yield the same answer.] Adding a term λÔ to the
hamiltonian. This term lift the degeneracy between the different vacuum. If λ > 0, the vacuum
with negative 〈O〉 has lower energy. This state is selected as oppose to the other state. It is quite
clear that E(λ) < E(0).

Vafa and Witten’s argument goes like this: Consider, for instance, a gluonic hermitian operator
FF̃ = 1/2ǫµναβFµνFαβ . In the Euclidean path integral, this operator always has an i because of
the Wick rotation:

exp−F (λ)V4 =

∫

[DA]Det(6D +M) exp

(

−S − i

∫

λFF̃

)

. (5.103)

When λ = 0, we have the usual free energy. When λ is non-zero, the exponential factor is always
less than 1, F (λ) is the alway larger at non-zero λ, i.e., the free energy reaches the minimum when
λ = 0. This contradicts the SSB condition that E(λ) < E(0).

However, the Vafa-Witten proof has a loophole.


