Solution To PHYS622 Homework Set 2

1 Solution1

(a). The characteristic equation $det[B-\lambda I] = 0$, leads to $(\lambda-b)^2(\lambda+b) = 0$. Hence $\lambda = \pm b$ and $\lambda = b$ is a two-fold degenerate eigenvalue. (b). Straightfowrd matrix multiplication gives

$$AB = \begin{pmatrix} ab & 0 & 0\\ 0 & 0 & iab\\ 0 & -iab & 0 \end{pmatrix} = BA \rightarrow [A, B] = 0.$$

(c). The eigenvectors of B,together with [A, B] = 0, yield simultaneous eigenvectors of A and B. Let λ_i be eigenvalues of B, and corresponding eigenvectors are

$$u^{i} = \begin{pmatrix} u_{1}^{i} \\ u_{2}^{i} \\ u_{3}^{i} \end{pmatrix}, where \ Bu^{i} = \lambda_{i}u^{i}, i = 1, 2, 3$$

For $\lambda_1 = b$, we could choose eigenvector as

$$u^1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix} = |1>.$$

For $\lambda_2 = b$, the eigenvector could be

$$u^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\i \end{pmatrix} = \frac{1}{\sqrt{2}} (|1>+i|3>), where \ |2> = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, |3> = \begin{pmatrix} 0\\0\\i \end{pmatrix}.$$

Note u^2 can not be chosen as same as u^1 although they have same eigenvalue, because they should be orthogonal.

For nondegenerate $\lambda_3 = -b$, again u^3 must be orthogonal to u^1, u^2 . We can have

$$u^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ -i \end{pmatrix} = \frac{1}{\sqrt{2}} (|1 > -i|3 >).$$

In this new set $u^i(i = 1, 2, 3)$, obviously $Au^1 = au^1$, $Au^2 = -au^2$, $Au^3 = -au^3$.

2 Solution2

Choosing the S_z diagonal basis, the first measurement corresponds to the operator M(+) = |+>< +|. The second measurement is expressed by the operator $M(+; \hat{n}) =$

 $|+;\hat{n}><+;\hat{n}|$ where $|+;\hat{n}>=cos(\beta/2)|+>+sin(\beta/2)|->$ with $\alpha=0.$ Therefore

$$M(+;\hat{n}) = (\cos(\beta/2)|+> +\sin(\beta/2)|->)(\cos(\beta/2)<+|+\sin(\beta/2)<-|)$$

= $\cos^2(\beta/2)|+><+|+\cos(\beta/2)\sin(\beta/2)(|+><-|+|-><+|)+\sin^2(\beta/2)|-><-|.$

The final measurement corresponds to the operator $M(-) = |-\rangle \langle -|$, and the total measurement

$$M_T = M(-)M(+;\hat{n})M(+) = \cos(\beta/2)\sin(\beta/2)|-><+|$$

the intensity of the final $S_z = \frac{-\hbar}{2}$ beam, when the $S_z = \frac{\hbar}{2}$ beam surviving the first measurement is normalized to unity, is thus $\cos^2(\beta/2)\sin^2(\beta/2) = \sin^2(\beta)/4$. To maximize $S_z = \frac{-\hbar}{2}$ final beam, set $\beta = \pi/2$, i.e. along OX, and intesity is 1/4.

3 Solution3

(a).*H*is a diagonal matrix in the orthonomal basis spanned by $|u_1\rangle, |u_2\rangle$, $|u_3\rangle$, with the eigenvalues $\hbar\omega, 2\hbar\omega, 2\hbar\omega$ respectively. When we measure the energy of system, we can get \hbar with the probability $(\frac{1}{\sqrt{2}})^2 = \frac{1}{2}$, and $2\hbar$ with the probability $(\frac{1}{\sqrt{2}})^2 + (\frac{1}{2})^2 = \frac{1}{2}$. Since $\langle H \rangle = \langle \psi | H | \psi \rangle = \frac{3}{2}\hbar\omega$, and $\langle H^2 \rangle = \langle \psi | H^2 | \psi \rangle = \frac{5}{2}(\hbar\omega)^2$, we can get $\Delta H = \sqrt{\langle H^2 \rangle - \langle H \rangle^2} = \frac{1}{2}\hbar\omega$. (b).Solve characteristic equation $det[A - \lambda I] = 0$, we get $\lambda_1 = a, \lambda_2 = a$ and $\lambda_3 = -a$. We can choose the eigenstates as $|\psi_1\rangle = |u_1\rangle, |\psi_2\rangle = \frac{1}{\sqrt{2}}(|u_2\rangle + |u_3\rangle), |\psi_2\rangle = \frac{1}{\sqrt{2}}(|u_2\rangle - |u_3\rangle)$ respectively. So the possible measurement value is a with probability $|\langle \psi_1 | \psi \rangle |^2 + |\langle \psi_2 | \psi \rangle |^2 = 1$. The probability to get value -a is 0, because $|\langle \psi_3 | \psi \rangle |^2 = 0$. After measurement, the state vector could be one of $|\psi_1\rangle, |\psi_2\rangle, \frac{1}{\sqrt{2}}(|\psi_1\rangle + |\psi_2\rangle)$.

vector could be one of $|\psi_1\rangle, |\psi_2\rangle, \frac{1}{\sqrt{2}}(|\psi_1\rangle + |\psi_2\rangle).$ (c).Since $\langle B \rangle = \langle \psi | B | \psi \rangle = (\frac{1}{\sqrt{2}} + \frac{1}{4})b$, and $\langle B^2 \rangle = \langle \psi | B^2 | \psi \rangle = b^2$, we can get $\Delta B = \sqrt{\langle B^2 \rangle - \langle B \rangle^2} = b \frac{\sqrt{7-4\sqrt{2}}}{4}.$

4 Solution4

Take the normalized linear combination $| \geq \alpha | + \rangle + (1 - \alpha^2)^{\frac{1}{2}} e^{i\beta} | - \rangle$, where α is real and $|\alpha| \leq 1$. Then elementary calculations yield $\langle |(\Delta S_x)^2| \rangle = \frac{\hbar^2}{4} [1 - 4\alpha^2 (1 - \alpha^2) \cos^2(\beta)]$ and $\langle |(\Delta S_y)^2| \rangle = \frac{\hbar^2}{4} [1 - 4\alpha^2 (1 - \alpha^2) \sin^2(\beta)]$. And the produce is

$$< |(\Delta S_x)^2| > < |(\Delta S_y)^2| > = \frac{\hbar^4}{16} [1 - 4\alpha^2 (1 - \alpha^2) + 4\alpha^4 (1 - \alpha^2)^2 sin^2 (2\beta)].$$

Maximum for $\sin^2(2\beta)$ is when $\beta = \pi/4$, then $\langle |(\Delta S_x)^2| \rangle \langle |(\Delta S_y)^2| \rangle = \frac{\hbar^4}{16} [1 - 2\alpha^2(1 - \alpha^2)]^2$. It is clear that $\alpha^2 = 1/2$ is minimum, and when $\alpha^2 = 1/2$.

0,1 the maximum value $\hbar^4/16$ is reached. Hence the linear 'combination' that maximizes uncertainty product is $e^{i\pi/4}|->$ or $\pm|+>$. That $\pm|+>$ does not violate uncertainty relation is obvious because of $[S_x,S_y]=i\hbar S_z$ and $<|S_z|>=\hbar/2$. For the $e^{i\pi/4}|->$ case, we note that the phase factor $e^{i\pi/4}$ cancels out in the scalar product, and $<-|S_x|->=<-|S-y|->=0$ while $<-|S_x^2|->=<-|S_y^2|->=\hbar^2/4$. Again $<-|[S_x,S_y]|->=<-|i\hbar S-z|->=i\hbar(-\hbar/2)=-i\hbar^2/2$. Therefore we have $<|(\Delta S_x)^2|><|(\Delta S_y)^2|>=\hbar^4/16=1/4|<-|[S_x,S_y]|->|^2$, no violation.

5 Solution5

(a).We calculate this problem with brute force $\rho_A = Tr_B(|\psi\rangle \langle \psi|) =_B \langle +|\psi\rangle \langle \psi|+\rangle_B +_B \langle -|\psi\rangle \langle \psi|-\rangle_B$. Substitute $|\psi\rangle = \frac{1}{\sqrt{2}}|+\rangle_A (\frac{1}{2}|+\rangle + \frac{\sqrt{3}}{2}|-\rangle_B) + \frac{1}{\sqrt{2}}|-\rangle_A (\frac{\sqrt{3}}{2}|+\rangle + \frac{1}{2}|-\rangle_B)$ into above equation,we can get $\rho_A = \frac{1}{2}_A|+\rangle \langle +|_A + \frac{1}{2}_A|-\rangle \langle -|_A + \frac{\sqrt{3}}{4}_A|-\rangle \langle +|_A + \frac{\sqrt{3}}{4}_A|+\rangle \langle -|_A$ or in matrix form $\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{2} \end{pmatrix}$. With same procedure, $\rho_B = \frac{1}{2}_B|+\rangle \langle +|_B + \frac{1}{2}_B|-\rangle \langle -|_B + \frac{\sqrt{3}}{4}_B|-\rangle \langle +|_B + \frac{\sqrt{3}}{4}_B|+\rangle \langle -|_B$ or $\rho_B = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{2} \end{pmatrix}$ in matrix form. (In this problem, one should be careful. Do not mix the eigenkets $|\pm\rangle_A, |\pm\rangle_B$.) (b). We need to diagnolize ρ_A . From the characteristic equation $det \begin{pmatrix} \frac{1}{2} - \lambda & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{2} - \lambda \end{pmatrix} =$

0, we have eigenvalues $\lambda_{\pm} = \frac{1}{2} \pm \frac{\sqrt{3}}{4}$. The eigenstates can written as $|\psi_A^{\pm}\rangle = \frac{1}{\sqrt{2}}(|+\rangle_A + |+\rangle_A)$. Hence $|\phi_B^{\pm}\rangle = \langle \psi_A^{\pm}|\psi\rangle > = 1\frac{1\pm\sqrt{3}}{4}$, and normalize it, one can have $\langle \phi_B^{\pm}|\phi_B^{\pm}\rangle = 1\pm\frac{\sqrt{3}}{2} \equiv P_{\pm}$. Write normalized $|\psi\rangle$ as $|\psi_B^{\pm}\rangle = \frac{1}{\sqrt{P_{\pm}}}|\phi_B^{\pm}\rangle$, so the Schmidt decomposition of $|\psi\rangle$ is $|\psi\rangle_{AB} = \sqrt{P_{\pm}}|\psi^{+}\rangle_A |\psi^{+}\rangle_B + \sqrt{P_{-}}|\psi^{-}\rangle_A |\psi^{-}\rangle_B$.

6 Solution6

Method 1. Use the brute force as in Problem5. Note $|+\rangle_m = \cos(\frac{\theta_m}{2})e^{-i\frac{\varphi_m}{2}}|+\rangle$ $+\sin(\frac{\theta_m}{2})e^{-i\frac{-\phi_m}{2}}|-\rangle$ and $|+\rangle_n = \cos(\frac{\theta_n}{2})e^{-i\frac{\phi_n}{2}}|+\rangle +\sin(\frac{\theta_n}{2})e^{-i\frac{-\phi_n}{2}}|-\rangle$. The probability that both spins are up along their respective axis is $P = \langle +|_m \langle +|_n\rho|+\rangle_n |+\rangle_m = \frac{1}{8} + \frac{1}{8}[1 - (\cos\theta_m\cos\theta_n + \sin\theta_m\sin\theta_n\cos(\theta_m - \theta_n)]$. To go further, we need to use the condition $\vec{m} \cdot \vec{n} = \cos\theta$. Write the unit vectors \vec{m} and \vec{n} as components form $\vec{m} \cdot \vec{n} = (\sin\theta_m\cos\phi_m\vec{e}_x + \sin\theta_m\sin\phi_m\vec{e}_y + \cos\theta_m\vec{e}_z)(\sin\theta_n\cos\phi_n\vec{e}_x + \sin\theta_n\sin\phi_n\vec{e}_y + \cos\theta_m\vec{e}_z)(\sin\theta_n\cos\phi_n\vec{e}_x + \sin\theta_n\sin\phi_n\vec{e}_y - \cos\theta_n\vec{e}_z) = \cos\theta_m\cos\theta_n + \sin\theta_m\sin\theta_n\cos(\theta_m - \theta_n) = \cos\theta$. Therefore, $P = \frac{1}{4} - \frac{1}{8}\cos\theta$. Method 2. If we write $~\rho$ as matrix form, the calculation can be simplified.

$$\rho = \begin{pmatrix} \frac{1}{8} & 0 & 0 & 0\\ 0 & \frac{3}{8} & -\frac{1}{4} & 0\\ 0 & -\frac{1}{4} & \frac{3}{8} & 0\\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}$$

We can write the measurement operator as $A=|+>_n<+|_n(|+>_m<+|_m)$, where $|+>_m=\cos\frac{\theta}{2}|+>+sin\frac{\theta}{2}|->~, {\rm and}~|+>_n=|+>~$. In matrix form

$$\rho = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \cos \frac{\theta}{2} \sin \frac{\theta}{2} & 0 & 0\\ \cos \frac{\theta}{2} \sin \frac{\theta}{2} & \sin^2 \frac{\theta}{2} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore

$$P = Tr(\rho A) = Tr\left(\begin{array}{ccc} \frac{\cos^2\frac{\theta}{2}}{8} & \frac{\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{8} & 0 & 0\\ \frac{3\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{8} & \frac{3\sin^2\frac{\theta}{2}}{8} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{array}\right) = \frac{\cos^2\frac{\theta}{2}}{8} + \frac{3\sin^2\frac{\theta}{2}}{8} = \frac{1}{4} - \frac{1}{8}\cos\theta.$$