Department of Physics University of Maryland, College Park

Midterm Exam, Physics 622 — Friday, Nov. 11, 2005

Problem 1: Particle in Magnetic Field (40 pts)

1) Consider the expectation value of a free-particle hamiltonian

$$\langle H \rangle = \int d^3 \vec{r} \psi^*(\vec{r}) \left(-\frac{\hbar^2 \nabla^2}{2m} \right) \psi(\vec{r}) \tag{1}$$

Show that it is invariant under a constant phase transformation

$$\psi(x) \to e^{i\theta} \psi(x)$$
 (2)

where θ is a constant. Also show that it is not invariant if θ depends on coordinate \vec{r} . (10pts)

2) Following 1), if one introduces the vector potential \vec{A} by modifying the hamiltonian,

$$\langle H \rangle = \int d^3 \vec{r} \psi^* \left(\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \frac{e\vec{A}}{c} \right)^2 \right) \psi$$
 (3)

the expectation value can be made invariant under the transformation $\psi(x) \to e^{i\theta(x)}\psi(x)$, so long as \vec{A} makes a gauge transformation. Work out the transformation for \vec{A} in terms of $\theta(x)$. [You only get half of the credit if you just remember the answer.] (10pts)

- 3) An electron moves in the x-y plane in the presence of a uniform magnetic field in the z-direction. Evaluate $[\Pi_x, \Pi_y]$ where $\Pi_x = p_x eA_x/c$ and $\Pi_y = p_y eA_y/c$. (10 pts)
- 4) Following 3), by comparing the hamiltonian $H = \Pi_x^2/2m + \Pi_y^2/2m$ and the commutation relation obtained in 3) with those of the one-dimensional oscillator, show the energy value is

$$E_n = \left(\frac{|eB|\hbar}{mc}\right) \left(n + \frac{1}{2}\right) \tag{4}$$

(10 pts)

Problem 2: Semiclassical Approximation (20 pts)

In the semiclassical approximation, the WKB wave function for a one-dimensional quantum mechanical system with hamiltonian, $H = p^2/2m + V(x)$, can be approximated as

$$\psi(x,t) \sim \frac{1}{[2m(E-V(x))]^{1/4}} \exp\left[\pm \frac{i}{\hbar} \int^x dx' \sqrt{2m[E-V(x')]}\right]$$
 (5)

where $\sqrt{2m(E-V(x))}$ can be regarded as position-dependent classical momentum p(x).

- 1) Calculate the probability density ρ and give a classical interpretation of its physical significance. (10 pts)
- 2) Use $J = (1/m) \text{Re}[\psi^* \hat{p} \psi]$ to calculate the current density and give a classical interpretation. (10 pts)

Problem 3: Angular Momentum (40 pts)

Consider addition of orbital and spin-1 (s=1) angular momenta, $\vec{j} = \vec{\ell} + \vec{s}$. Assume the orbital motion is in $\ell = 1$ space.

- 1). Write down the basis of states which are eigenstates of ℓ^2 , ℓ_z , \vec{s}^2 , s_z for the tensor product space (let's call them m-states). (10 pts)
- 2). Find the total angular momentum state $|j=2,m=2\rangle$ in terms of the m-states. Using the lowering operator J_- , find state $|j=2,m=1\rangle$. Using orthogonal condition, find state $|j=1,m=1\rangle$. [Hint: $J_-|jm\rangle = \hbar\sqrt{(j+m)(j-m+1)}|jm-1\rangle$] (10 pts)
- 3). A spinor is a two-component complex vector ψ such that under space rotation $\vec{\theta}$, it transforms according to

$$\psi \to \exp\left(-i\frac{\vec{\theta}\cdot\vec{\sigma}}{2}\right)\psi$$
 (6)

Assume the spin (s = 1/2) vector is in the z-x plane, making an angle θ with respect to the z-axis. Work out the spinor by rotating the spinor in the z-direction $(\psi_z = \text{column vector } (1,0))$. (10 points)

4). An angular-momentum eigenstate $|j, m = m_{\text{max}} = j\rangle$ is rotated by an infinitesimal angle ϵ about the y-axis. Without using the explicit form of the Wigner *D*-function, obtain an expression for the probability for the new rotated state to be in the original state up to terms of order ϵ^2 . (10pts)