Department of Physics University of Maryland, College Park

Midterm Exam, Physics 622 — Friday, Oct. 7, 2005

Problem 1: Dirac Notation, Etc. (30 pts)

 $|\phi_n\rangle$ are the eigenstates of a hermitian operator H. Assume that the states $|\phi_n\rangle$ form a discrete orthonormal basis. The operator U(m,n) is defined by $U(m,n) = |\phi_m\rangle\langle\phi_n\rangle$.

- a) Calculate the hermitian conjugate $U^{\dagger}(m,n)$ of U(m,n). (6 pts)
- b) Calculate the commutator [H, U(m, n)]. (6 pts)
- c) Calculate TrU(m,n), the trace of the operator U(m,n). (6 pts)
- d) Calculate the trace $Tr[AU^{\dagger}(p,q)]$. (6 pts)
- e) Expand the operator A in terms of U(m, n) and work out the coefficient of the expansion using bra-ket notation. (6 pts)

Problem 2: Time Evolution (35 pts)

Consider a system with two linearly independent states $|+\rangle$ and $-\rangle$. The most general state is a normalized linear combination $|\psi\rangle = a|+\rangle + b|-\rangle$ with $|a|^2 + |b|^2 = 1$. Suppose the hamiltonian matrix is,

$$H = \hbar \begin{pmatrix} \alpha & -i\beta \\ i\beta & \alpha \end{pmatrix} \tag{1}$$

where α and β are real constants.

- a) Find the eigenvalues and normalized eigenvectors of the hamiltonian. (7 pts)
- b) Suppose the system starts out at $|+\rangle$ at t=0. What is the state at time t? Simplify your expression to get the full credit. (7 pts)
 - c) At what time is the system entirely in state $|-\rangle$? (7 pts)
- d) If one measures the energy at t, what values will one find? With what probabilities? (7 pts)
- e) Calculate the average energy at any time t. Calculate the standard deviation ΔE . (7 pts)

(go to next page)

Problem 3: One-Dimensional Harmonic Oscillator (35 pts)

Consider a particle subject to a one-dimensional simple harmonic oscillator potential and the hamiltonian is $H = \hat{p}^2/(2m) + (1/2)m\omega^2\hat{x}^2$.

- a) Work out the Heisenberg equations of motion for $\hat{x}(t)$ and $\hat{p}(t)$. (7 pts)
- b) Solve the above equations to find $\hat{x}(t)$ and $\hat{p}(t)$ in terms of $\hat{x}(0)$ and $\hat{p}(0)$ at t = 0. (7 pts)
 - c) If the oscillator is in state

$$|\psi\rangle = \exp(-i\hat{p}a/\hbar)|0\rangle \tag{2}$$

where $|0\rangle$ is the oscillator ground state and \hat{p} is the momentum operator and a is some number with dimension of length, write down the coordinate space wave function of $|\psi\rangle$, in terms of $\langle x|0\rangle = \frac{1}{\sqrt{\sqrt{\pi}b}} \exp{(-x^2/(2b^2))}$. (7 pts)

- d) Calculate the commutator $[\hat{x}, e^{-i\hat{p}a/\hbar}]$. (7 pts)
- e) Suppose at t=0, the state vector is given by

$$\exp(-i\hat{p}a/\hbar)|0\rangle \tag{3}$$

Calculate the expectation value of $\langle \hat{x} \rangle$ for t > 0 using Heisenberg picture. Hint: use result from d) (7 pts)