Lecture 2: Dirac Notation and Two-State Systems: Friday Sept.
2

Light polarization is an example of classical physics which uses the same
kind of math structure as in quantum physics. Assuming you have already
know the basics of quantum mechanics, let us summarize the main points of
quantum principles here:

States and bras and kets

1) A state of a quantum mechanical system is entirely determined by a
vector in a complex vector space (state space, called Hilbert space if it is
infinite dimensional), just like the polarization of light. Such a vector is
denoted by a ket [¢), in Dirac notation. Dimensionality (finite or infinite) of
the vector space depends on quantum systems.

2) Recall the conditions for a linear vector space: Two vectors can be
added to obtain a third vector c;|¢) + ca|tbe) = |¢) (the principle of super-
position, like in a wave).

3) |¢) and c|i)) represent the same state, and belong to the same “ray”.
Therefore, we also say that “a quantum state is represented by a ray.”

4) For every ket [¢), there is a corresponding bra (1|, which is called
a dual vector. The dual of c[¢)) is (¢|c*, and the dual of ¢i|i)1) + co|ths) is
L] + (i),

5) The inner (scalar) product is defined between a bra and a ket, and the
result is a complex number: (|¢p) = (@|1))* = ¢. When switching the bra
and ket, we get a complex-conjugate number.

6) (Y]1) is real, we assume it is always positive definite. We call |/(¢]1))
the length (norm) of the vector. Therefore, we can define a normalized vector

(¢|) = 1. We can assume all state vectors are normalized (with arbitrary
phase of course).
7) Two vectors are orthogonal if their scalar product is zero (1|¢) = 0.
8) In the state space, one can define a set of orthonormal basis |e;),
(eilej) = 0;; and every vector in the space can be expanded in terms of the

basis, [¢) = 3Z; cile;), where ¢; = (e;[4)).

Observable and operators

1) All quantum mechanical observables are represented by linear, her-
mitian operators in the complex linear vector space. An operator O acting
on a ket in the space yields another ket: Oly) = |[¢'). Linearity means



X(cala) + c18)) = caXa) + 5X[8), and (aX + bY)|6) = aX|i) + bY|1).
Operator product is noncommutative XY # Y X.

2) The corresponding bra of Oli) is (1|07, where OF is called hermi-
tian conjugation. A hermitian operator satisfies O = O. The hermitian
conjugation of XY is YTXT.

3) Hermitian operators have real eigenvalues and the eigenstates with
different eigenvalues are orthogonal.

4) If a hermitian operator has no degenerate eigenvalue, the eigenstates
form an orthonormal basis in the state space.

5) Associativity of the product: |5)(«a||y) can be interpreted in two ways:
a c-number times a ket, or an operator acting on a ket, both are the same.
Therefore |1)(¢| is an operator. Its hermitian conjugation is |¢)(|. Like
wise (¢|X|¢) can be interpreted in both ways. (3|X|a) = (a|XT|8)*.

6) Closure relation: If we expand [¢) = ¥, ¢;le;), and use ¢; = (e;]|).
Then we find Y, |e;)(e;] = 1.

7) Projection operator: P = |¢) (1| is a projection operator in the sense
that when it acts on any state, it projects along the direction of |¢)). Define
P, = (e;)(e;], then >, P, = 1.

8) Matrix representation: A state ket, once expanded in a basis, can
be represented by a column matrix. The same state, once written as a
bra, can be represented by a row matrix with complex-conjugated numbers.
An operator can be expanded in terms of |e;)(e;|. The coefficient of the
expansion is (e;|O|e;) and can be arranged in the form of a square matrix.
All expressions in terms of bras, kets, and operators can be converted into
matrix expressions.

Example

The simplest quantum mechanical systems have their state spaces as a
2D complex vector space. Examples include spin-1/2 particles such as the
electron or proton, neutrino flavor oscillations, kaon decay, NH3 molecules.
[In fact, light polarization is a phenomenon resulted from quantum mechanics
of photon polarization!] In the 2D space, we can take a basis |[+) and |—).
Then all operators can be taken as 2 x2 hermitian matrices. Each of these can
be written as a linear superposition of the following four hermitian matrices,
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where o; are called Pauli matrices. Thus we write,

0= aoj + Z a;0; (23)

where a¢ and a; are real numbers. Therefore, independent of whether we are
dealing with a spin system or not, Pauli matrices are very useful for doing
calculations in 2D vector spaces.

For a spin-1/2 particle, the spin angular momentum operators can be
identified with Pauli matrices. In particular,

h

where S; satisfy the angular momentum commutation relation,
[Si, Sj] = ih€1Sk (25>

Clearly |+ and |—) are eigenstates of S, with eigenvalues i/2 and —h/2,
respectively.
The magnetic moment of a spin-1/2 particle is proportional to its angular
momentum -
fi = gupS (26)
where pp = |e|h/2mec and g is called g-factor. For the electron it close to
—2, where negative sign arises because the electron has negative charge (spin
and magnetic moment have different direction). The interaction energy in a

magnetic field is,

which H is an operator in the state space.
The eigenstates of S, are |£), = (|4+) £ |—))/v/2, with eigenvalues £5,/2.
The eigenstates of S, are |+), = (|+) +i|—))/v/2, with the same eigenvalues.

The eigenstates of
L= cosf  sinfe
n- 5= ( sinfe’®  —cosd > (28)

where 77 = (cos ¢ sin 6, sin f sin ¢, cos §) can be found to be
6 . 6 .
|+), = cos 56_Z¢/2|+> + sin ie’¢/2|—>

0, 0 _i
=) = —sinﬁe“z’/2|+>+Cos§e_l¢/2’—> (29)



