Phys. 622: Homework Set II

1. (JJS 1.23) Consider a three-dimensional ket space. If a certain set of orthonormal kets, say $|1\rangle$, $|2\rangle$, $|3\rangle$, are used as the basis kets, the operators A and B are represented by

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix}; \quad B = \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix}$$
(1)

with a and b both real.

a. Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate spectrum?

b. show that A and B commute.

c. Find a new set of orthonormal kets which are simultaneous eigenkets of both A and B. Specify the eigenvalues of A and B for each of the three eigenkets. Does your specification of eigenvalues completely characterize each eigenket?

2 (JJS 1.13). A beam of spin 1/2 atoms goes through a series of Stern-Gerlach type measurements as follows:

a. The first measurement accepts $s_z = \hbar/2$ atoms and rejects $s_z = -\hbar/2$ atoms.

b. The second measurement accepts $s_n = \hbar/2$ atoms and rejects $s_n = -\hbar/2$ atoms, where s_n is the eigenvalue of the operator $\vec{S} \cdot \hat{n}$, with \hat{n} making an angle β in the xz-plane with respect to the z-axis.

c. The third measurement accepts $s_z = -\hbar/2$ atoms and rejects $s_z = \hbar/2$ atoms.

What is the intensity of the final $s_z = -\hbar/2$ beam when the $s_z = \hbar/2$ beam surviving the first measurement of normalized to unity? How must we orient the second measuring apparatus if we are to maximize the intensity of the final $s_z = -\hbar/2$ beam?

3. Consider a physical system whose state space, which is three-dimensional, is spanned by the orthonormal basis formed by the three kets $|u_1\rangle$, $|u_2\rangle$, $|u_3\rangle$. In this basis, the Hamiltonian operator H of the system and the two observables A and B are written

$$H = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}; \quad A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \quad B = b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad (2)$$

The physical system is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{1}{2}|u_2\rangle + \frac{1}{2}|u_3\rangle \tag{3}$$

a. Suppose the energy of the system is measured, what values can be found, and with what probabilities? Calculate, for the system in the state the mean value $\langle H \rangle$ and the root-mean-square deviation ΔH .

b. Suppose instead one measures A, what results can be found and with what probabilities? what is the state vector immediately after the measurement?

c. What is the root mean-square deviation ΔB ?

4 (JJS 1.20). Find the linear combination of $+\rangle$ and $|-\rangle$ kets that maximizes the uncertainty product $\langle (\Delta S_x)^2 (\Delta S_y)^2 \rangle$. Verify explicitly that for the linear combination you found, the uncertainty relation for S_x and S_y is not violated.

5. For the two spin state

ľ

$$\Psi \rangle = \frac{1}{\sqrt{2}} |+\rangle_A \left(\frac{1}{2} |+\rangle_B + \frac{\sqrt{3}}{2} |-\rangle_B \right) + \frac{1}{\sqrt{2}} |-\rangle_A \left(\frac{\sqrt{3}}{2} |+\rangle_B + \frac{1}{2} |-\rangle_B \right)$$
(4)

a. Compute $\rho_A = \operatorname{Tr}_B(|\Psi\rangle\langle\Psi|)$ and $\rho_B = \operatorname{Tr}_A(|\Psi\rangle\langle\Psi|)$.

b. Find the Schmidt decomposition of $|\Psi\rangle$ (optional).

6. Consider a density matrix for two spins

$$\rho = \frac{1}{8}I + \frac{1}{2}|\psi^{-}\rangle\langle\psi^{-}| \tag{5}$$

where I is a 4×4 unit matrix, and

$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}(|+\rangle|-\rangle - |-\rangle|+\rangle) \tag{6}$$

Suppose we measure the first spin along the \hat{n} axis and the second spin along the \hat{m} axis, where $\hat{n} \cdot \hat{m} = \cos \theta$. What is the probability that both spins are up along their respective axis?