7.4: Verify the relations given by Eqs. (7.3) through (7.6) using the definitions (7.1) and (7.2).

3.7 Lie Algebraic Properties

Let A be any matrix. The exponential of a matrix, written variously as e^A or exp(A), is defined by the exponential series

$$e^A = \exp(A) = \sum_{n=0}^{\infty} A^n/n!.$$
 (3.7.1)

Similarly, the logarithm of a matrix A (sufficiently near the identity) is defined by the series

$$log(A) = log[I - (I - A)] = -\sum_{n=1}^{\infty} (I - A)^n/n.$$
 (3.7.2)

As might be expected, the exponential and logarithmic functions are related. Specifically, if one has

$$B = \log(A),$$
 (3.7.3)

then it follows that

$$A = \exp(B)$$
. (3.7.4)

Put another way, one has the relations

$$A = \exp[\log(A)]$$
 for A sufficiently near the identity matrix, (3.7.5)

$$B = \log[\exp(B)]$$
 for B sufficiently near the zero matrix. (3.7.6)