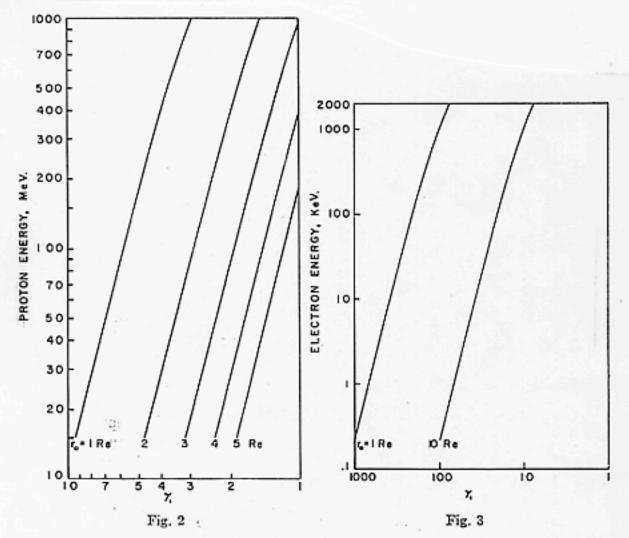
where the primes have been suppressed for notational convenience. The dimensionless constant γ_1 of equation 2.18 is that used by Störmer [1955, pp. 219-224]¹ and is related to the constants of equations 2.7 and 2.9 by

7/8

$$\gamma_1^4 = \frac{1}{16} \left(\frac{g \mathfrak{M}}{v \gamma m} \right)^2 \Gamma^4 \qquad (2.20)$$

37 cont.

In this system of units, the particle gyrates about the guiding field line


$$r = \cos^2 \lambda$$
 (2.21)

with unit frequency when in the equatorial plane and has the dimensionless velocity

$$W_0 = 1/4\gamma_1^2$$
 (2.22)

The values of γ_1 for particles and energies relevant to the Van Allen radiation are given in Figures 2 and 3. For ease of computation, the relation between W_0^2 and γ_1 is plotted in Figure 4.

This book is a primary reference to work done on motion in a dipole field up to 1955. It contains an extensive discussion of the equations of motion and their solution by numerical integration.

Figs. 2-3. Values of γ₁ for particles and energies relevant to the Van Allen radiation. The particles are labeled according to their guiding field line with τ₀ given in earth radii. (M = 8.06 × 10⁻²² gauss cm³. R_s = radius of the earth = 6.378 km.