Then Eqs. (3.311) and (3.312) become

$$x = C_x + A \sin(\omega t + \theta) + \frac{at}{\omega}, \qquad (3.322)$$

$$y = C_y + A \cos(\omega t + \theta). \tag{3.323}$$

There are now only four constants, A, θ , C_x , C_y , to be determined by the initial values x_0 , y_0 , \hat{x}_0 , \hat{y}_0 . The z-motion is, of course, given by Eq. (3.304). If $E_y = 0$, the xy-motion is in a circle of radius A with angular velocity ω about the point (C_x, C_y) ; this is the motion considered in the previous example. The effect of E_y is to add to this uniform circular motion a uniform translation in the x-direction! The resulting path in the xy-plane will be a cycloid having loops, cusps, or ripples, depending on the initial conditions and on the magnitude of E_y (Fig. 3.43). This problem is of interest in connection with the design of magnetrons. The translation

has the velocity

$$v_D = a/\omega = E_y c/B$$
,
 $v_D = cE \times B/B^2$. (3.324)

This drift velocity of a charged particle in crossed electric and magnetic fields is of fundamental importance in the theory of plasmas.

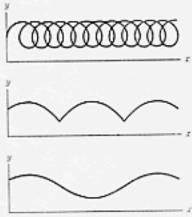


Fig. 3.43 Orbits in the xy-plane of a charged particle subject to a magnetic field in the z-direction and an electric field in the y-direction.