PART I (5 pts) Let tⁿ = t⁰ + nh, yⁿ = y(tⁿ), and define a backwards difference operator ∇ by ∇yⁿ = yⁿ - yⁿ⁻¹. Let D = d/dt. Then D is related to ∇ by 2. (7 pts) Consider the differential equation $$\dot{y} = f(y, t)$$ with $f^n = f(y^n, t^n)$, and the integration formulas $$y^{n+1} = y^n + h \sum_{k=0}^{N} a_k \nabla^k f^{n+1}$$, A $$y^{n+1} = y^n + h \sum_{k=0}^{N} b_k \nabla^k f^k$$. B Formula B is a predictor formula and formula A is a corrector formula. I expect the integration error in making a single step to be of order h^m with $(S-pposc\ N=0 \Rightarrow$ obviously has an error of order h.) 3. (3 pts) Expand out: $$\nabla^3 y^n = \vec{y}^n - 3 \vec{y}^{n-1} + 3 \vec{y}^{n-2} - \vec{y}^{n-3}$$