PART I

(5 pts) Let tⁿ = t⁰ + nh, yⁿ = y(tⁿ), and define a backwards difference operator ∇ by ∇yⁿ = yⁿ - yⁿ⁻¹. Let D = d/dt. Then D is related to ∇ by

2. (7 pts) Consider the differential equation

$$\dot{y} = f(y, t)$$

with $f^n = f(y^n, t^n)$, and the integration formulas

$$y^{n+1} = y^n + h \sum_{k=0}^{N} a_k \nabla^k f^{n+1}$$
, A

$$y^{n+1} = y^n + h \sum_{k=0}^{N} b_k \nabla^k f^k$$
. B

Formula B is a predictor formula and formula A is a corrector formula.

I expect the integration error in making a single step to be of order h^m with $(S-pposc\ N=0 \Rightarrow$

obviously has an error of order h.)

3. (3 pts) Expand out:

$$\nabla^3 y^n = \vec{y}^n - 3 \vec{y}^{n-1} + 3 \vec{y}^{n-2} - \vec{y}^{n-3}$$