University of Maryland
Department of Physics, College Park, MD 20742                

Physics 601----Classical Mechanics----Fall 2010

Instructor: Prof. Thomas Cohen (I prefer to be addressed as Tom)
Office: 2104 (Physics Building)
Phone: 5-6117 (Office); 301-654-7702 (Home---call before 10:00 p.m.)
E-mail: cohen@physics.umd.edu

 

TA/Grader:

Office Hours

 

Office hours are immediately following class. I am also generally available in my office and happy to see students; just drop by--or, better yet, give me a call and then drop by.

 

Course Philosophy


Classical mechanics is an exceptionally beautiful and powerful subject.   This class will focus on both its formal aspects and on important classes of applications.  The first section of the course focuses on formal approaches, Lagrangians, Hamiltonians, canonical transformations, Hamilton-Jacobi approach and the like.  The second section part of the course deals with applications such as scattering, small vibrations, central force problems, rigid-body motion and relativistic dynamics.  Depending on the amount of time available this will deal with classical perturbation theory and other approximation methods in classical mechanics and perhaps some aspects chaotic dynamics and dynamical systems.

 

The course assumes that you have had a strong undergraduate background in classical mechanics.   If this is not the case please review a standard undergraduate classical mechanics book such as Classical Mechanics, by John R. Taylor or Classical Dynamics of Particles and Systems by Thornton and  Marion

 

Books

 

The official text for the course is Classical Dynamics by Goldstein, Poole and Safko (ISBN 0-201-65702-2). The book is the canonical graduate classical mechanics book and covers the topics in a straightforward way.   The course lectures will not follow the book closely, however the book will give useful alternative explanations for things covered in lecture.  Those who wish to approach things from a more sophisticated mathematical framework including 

differential geometry using tangent bundles and the like may find it interesting to look at Jose and Saletan, Classical Dynamic: A Contemporary Approach.

 

Homework

 

Problem sets will be assigned regularly. Problem sets may require the use of numerical analysis that can be done in Mathematica or some other computer program. I strongly encourage students to consult each other on problem sets. Ideally you should attempt all of the problems by yourselves and if you get stuck you should then consult your peers.  Homework will count approximately 20% of the final grade. Not all problems will be graded---a representative sample will be.  A set of solutions to the homework problems prepared by the TA will be posted on the course web cite for additional feedback.  These solution sets may in part consistent of corrects solutions submitted by students in the course.  If you object to your homework being used as a solution set, please indicate this on your homework (or simply do a lousy job on your homework).

 

Exams

 

There will be a midterm exam and a final exam in this course. The exams will count for approximately 80% of the total course grade. The exams are currently planned as take-home. Take-home exams have two virtues: they reduce the time pressure on students and allow them to perform at their best and they allow for questions that are less trivial than can be done during a class period. They do have a potential drawback, however. They are impossible to police efficiently against cheating. Thus, we must rely on your integrity. I will ask you to pledge to do the exams alone and to stick to this pledge. I should note that the whole enterprise of science depends on the integrity of the researchers--- when I read a scientific paper I must assume that the researchers didn't cook the books or I won't get anywhere.
                                           
 

 

 

                                                  Tentative Course Outline

 

·          Formal aspects

o    Lagrangian Approach

§   The variational principle and the equations of motion

§   Constraints

§   Symmetries and conservation laws

§   Continuum dynamics, field theory and wave equations

o    Hamiltonian Approach

§   Hamilton’s equations

§   Possion brackets

§   Canonical tranformations

§   Liouville’s theorem

§   Hamilton-Jacobi Equation and Action-Angle Variables

§   Classical Perturbation Theory

§   Adiabatic Invariance

·          Applications

o     Central force problems

§   The Kepler problem

o     Classical scattering theory

o     Coupled linear systems; small oscillations

o     Rigid-body motion

§   Euler angles

§   The Euler equations

o     Relativistic Dynamics

·          Nonlinear Dynamics

o     Resumed perturation theory; applications to the nonlinear oscillator

o     Topics in chaotic dynamics.