PROBLEMS

- 1. Construct a space-time diagram that involves a stationary observer (x, ct) and an observer (x', ct') moving with $\gamma = 3$. The word line of a photon in this diagram is at a 45° degree angle with respect to the x and ct axes.
 - a) If the units of time are seconds what are the units of the space axis in this diagram.
 - b) What is the value of the angle θ (in degrees) that the ct' axis makes with the ct axis.
 - c) What is the value of the angle that the axis x' makes with the world line of a photon.
 - d) Show the word line of a stationary observer in its own frame.
 - e) Consider an event with coordinates (x = 0, ct = 1) and draw the plane of simultaneity for this event.
 - f) What coordinates (x', ct') correspond to the (x = 0, ct = 1) event.
 - g) Draw the wordline of an observer that leaves the origin in a rocket with $\gamma = 3$, travels till ct = 2 and returns to the origin with $\gamma = 6$.
 - h) What is the angle between the returning world line and the ct axis.
 - i) What is the length of time in the stationary (Δt and moving ($\Delta t'$) frame for that duration of the round trip in question (g). (Ignore Doppler shifts).
- 2. Assume that you are at the origin of a laboratory reference system at time t = 0 when you start your clock (event A). Determine whether the following events are within the future lightcone or past lightcone of event A, or elsewhere.
 - a) A flashbulb goes off 7 m away at time t = 0.
 - b) A flashbulb goes off 7 m away at time t = 2 s.
 - c) A flashbulb goes off 70 km away at time t = 2 s.
 - d) A flashbulb goes off 700,000 km away at time t = 2 s.
 - e) A supernova explodes 180,000 ly away at time $t = -5.7 \times 10^{12}$ s.
 - f) A supernova explodes 180,000 ly away at time $t = 5.7 \times 10^{12}$ s.
 - g) A supernova explodes 180,000 ly away at time $t = -5.6 \times 10^{12}$ s.
 - h) A supernova explodes 180,000 ly away at time $t = 5.6 \times 10^{12}$ s.

For items (e) and (g), could an observer in another reference frame moving relative to yours measure that the supernova exploded *after* event A? For items (f) and (h), could an observer in another frame measure that the supernova exploded *before* event A?

- 3. τ Ceti is the closest single star that is similar to the Sun. At time t = 0, Alice leaves Earth in her starship and travels at a speed of 0.95c to τ Ceti, 11.7 ly away as measured by astronomers on Earth. Her twin brother, Bob, remains at home, at x = 0.
 - i) According to Bob, what is the interval between Alice's leaving Earth and arriving at τ Ceti?
 - j) According to Alice, what is the interval between her leaving Earth and arriving at τ Ceti?
 - k) Upon arriving at τ Ceti, Alice immediately turns around and returns to Earth at a speed of 0.95c. (Assume that the actual turnaround takes negligible time.) What was the proper time for Alice during her round trip to τ Ceti?
 - 1) When she and Bob meet on her return to Earth, how much younger will Alice be than her brother.
- 4. Serway problem 2.20.
- 5. Serway problem 2.29.