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Traditionally physics laboratory courses at the
freshman level have aimed to demonstrate
various principles of physics introduced in

lectures.  Experiments tend to be quantitative in 
nature with experimental and data analysis techniques
interwoven as distinct strands of the laboratory
course.1 It is often assumed that, in this way, 
students will end up with an understanding of the na-
ture of measurement and experimentation.  Recent 
research studies have, however, questioned this as-
sumption.2,3 They have pointed to the fact that fresh-
men who have completed physics laboratory courses
are often able to demonstrate mastery of the mecha-
nistic techniques (e.g., calculating means and standard
deviations, fitting straight lines, etc.) but lack an 
appreciation of the nature of scientific evidence, in
particular the central role of uncertainty in experi-
mental measurement.  We believe that the probabilis-
tic approach to data analysis, as advocated by the In-
ternational Organization for Standardization (ISO),
will result in a more coherent framework for teaching
measurement and measurement uncertainty in the in-
troductory physics laboratory course.

Over the past few years we have researched4–7 fresh-
man physics students’ understanding of the nature of
measurement.  The group at Thessaloniki has probed
students’ views of a single measurement.  They con-
cluded that, after completing a traditional laboratory
course, the majority have ideas about measurement
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that are inconsistent with the generally accepted scien-
tific model.4 For example, a large fraction of students
view the ideal outcome of a single measurement as an
“exact” or “point-like” value.  A sizeable minority feel
that since the ideal is not attainable, only an 
unquantified “approximate” value can be obtained in
practice.  Only if a measurement is considered really
“bad” would it then be reported in terms of an 
interval.5

The studies carried out by the Cape Town-York
group have focused on aspects of dispersion in data
sets.  A model of student thinking has been developed
that has been termed “point” and “set” paradigms.6

In brief, in the “set” paradigm the ensemble of data is
modeled by theoretical constructs from which a “best
estimate” and the degree of dispersion (an interval) are
reported.  However, the majority of students who 
arrive at university operate within the “point 
paradigm.”6 They subscribe to the notion that a “cor-
rect” measurement is one that has no uncertainty asso-
ciated with it.  For many students, therefore, the ideal
is to perform a single perfect measurement with the
utmost care.  When presented with data that are dis-
persed, they often attempt to choose the “correct” val-
ue (for example, the recurring value) from amongst
the values in the ensemble.  It was found7 that even af-
ter a carefully structured laboratory course,8,9 most
students had not shifted completely to “set” paradigm
thinking. 
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What Is Wrong with Traditional
Teaching About Measurement?

Although one of the most important aspects of
putting together a teaching sequence is bringing to-
gether the philosophy, logic, and modes of thinking
that underlie a particular knowledge area, introducto-
ry measurement is usually taught as a combination of
apparently rigorous mathematical computations and
vague rules of thumb.  We believe that this is a conse-
quence of the logical inconsistencies in traditional 
data analysis, which is based on analyzing the frequen-
cy distribution of the data.  This approach, often
called “frequentist,” is the one used or implied in most
introductory laboratory courses.

In the frequentist approach, “errors” are usually 
introduced as a product of the limited capability of
measuring instruments, or in the case of repeated
measurements, as a consequence of the inherent ran-
domness of the measurement process and the limited
predictive power of statistical methods.  These two
different sources of “error” cannot be easily recon-
ciled, thus creating a gap between the treatments of a
single reading and ensembles of dispersed data.  For
example, the theory applicable to calculating a mean
and a standard deviation is premised on the assump-
tion of large data sets (20 or 30).  Yet, when students
perform an experiment in the laboratory, they often
take five or fewer readings.  Furthermore, there is no
logical way to model statistically a single measurement
within this approach.

Traditional instruction usually emphasizes random
error for which there is a rigorous mathematical mod-
el, while systematic errors are reduced to the technical
level of “unknown constants” that have to be deter-
mined by examining the experimental setup.  The
concept of a “scale reading error,” usually taught at the
beginning of the course, cannot be related to either
random or systematic errors that are taught during the
treatment of repeated measurements.  Moreover, the
term “error” misleads students by suggesting the exis-
tence of true and false experimental results, possibly
endorsing the naive view that an experiment has one
predetermined “correct” result known by the instruc-
tor, while students’ measurements are often “in error.”
Readers will be all too familiar with the phrase “due to
human error” often used by students in order to ex-
plain unexpected results! 
THE PHYSICS TEACHER � Vol. 41, October 2003
In short, we consider that the logical inconsisten-
cies in the traditional approach to data treatment, 
together with the form of instruction that ignores stu-
dents’ prior views about measurement, further culti-
vate students’ misconceptions about measurement in
the scientific context.  

What Should be Done?
The need for a consistent international language

for evaluating and communicating measurement re-
sults prompted (in 1993) the ISO (International 
Organization for Standardization) to publish recom-
mendations for reporting measurements and uncer-
tainties10 based on the probabilistic interpretation of
measurement.  All standards bodies including the U.S.
National Institute of Standards and Technology
(NIST) have adopted these recommendations for re-
porting scientific measurements.  A number of docu-
ments currently serve as international standards.  The
most widely known are the so-called VIM (Interna-
tional Vocabulary of Basic and General Terms in Metrol-
ogy)10 and the GUM (Guide to the Expression of 
Uncertainty in Measurement),11 with a U.S. version12

distributed by NIST.  A shorter version of the latter is
publicly available as NIST Technical Note 1297.13 

We believe that the probabilistic approach advocat-
ed by the ISO will help in setting up a systematic
teaching framework at the freshman level and beyond,
and promote a better understanding of the nature of
measurement and uncertainty.  In addition, the coher-
ence of the approach will foreground the central role
of experiment in physics and highlight the interplay
between scientific inferences based on data and 
theory.  

A Probabilistic and Metrological
Approach to Measurement

The recommended approach10,11 to metrology is
based on probability theory for the analysis and inter-
pretation of data.  A key element of the ISO Guide is
how it views the measurement process.  In paragraph
2.1 of TN1297 it is stated that, “In general, the result
of a measurement is only an approximation or esti-
mate of the value of the specific quantity subject to
measurement, that is, the measurand, and thus the re-
sult is complete only when accompanied by a quanti-
tative statement of its uncertainty.”13 Uncertainty 
395



itself is defined as “a parameter associated with a mea-
surement result, that characterizes the dispersion of
the values that could reasonably be attributed to the
measurand.”11,12

The measurement process involves combining new
data with all previous information about the measur-
and to form an updated state of knowledge (see Fig.
1).  The formal mathematics used are probability den-
sity functions (pdfs) with the (true) value of the mea-
surand as the independent variable.  (We note that
there is no difference between the terms “the value of
the measurand” and “the true value of the measur-
and.”)11,12 Thus, the measurement process produces a
pdf that best represents all available knowledge about
the measurand.  The last step in the measurement
process involves making inferences about the measur-
and based on the final pdf.  We emphasize that both
the case of the single reading and the case of a set of
repeated observations with dispersion involve seeking
the final pdf for the measurand.

Although the ISO recommendations11,12 do not 
refer explicitly to the underlying philosophy, the 
formalism relies on the Bayesian approach to data
analysis (see for example Ref. 14 and its references).
Readers familiar with Bayesian terminology will see in
Fig. 1 that the process can be described as the prior
pdf convoluted with the likelihood (or sample func-
tion) to form the posterior pdf, which contains all the
information about the measurand.  The final pdf is
usually characterized in terms of its location, an inter-

Fig. 1. A model for determining the result of a mea-
surement.
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val along which the (true) value of the measurand may
lie, and the probability that the value of the measur-
and lies on that interval.  In metrological terms these
are, respectively, the best estimate of the measurand
and its uncertainty, and the coverage probability, or
level of confidence (the percentage area under the pdf
defined by the uncertainty interval).  A measurement
result includes these three quantities and ideally
should include an explicit statement about the pdf
used.

The ISO Guide11,12 suggests the use of three pdfs
for most situations (a uniform or rectangular pdf, a
triangular pdf, and a Gaussian pdf ).  If the pdf is sym-
metrical (as is the case with these three), then the best
estimate (the expectation or mean value) will coincide
with the center of the distribution, while the standard
uncertainty is given by the square root of the variance
(the second moment of the distribution).  Typical
statements describing a measurement result are of the
form “the best estimate of the value of the physical
quantity is X with a standard uncertainty U and the
probability that the measurand lies on the interval X
� U is Z %.”  (The coverage probability associated
with a standard uncertainty for the Gaussian pdf is
about 68% while those for the triangular and rectan-
gular pdfs are about 65% and 58%, respectively.)  In
this approach, instrument readings are considered as
constants, while the concept of probability is applied
to any claims made about the value of the measurand,
which is considered a random variable.  Neither the
measurand itself nor the data “possess” either uncer-
tainty or probability, but these concepts are applicable
to the inferences that are made.  This contrasts with
the traditional approach, where expressions are used
such as “the error of the measurement” or “the uncer-
tainty of the instrument scale.” 

The ISO Guide11,12 classifies uncertainty into two
types based on the method of evaluation.  A Type A
evaluation of uncertainty is based on the dispersion of
a set of data using statistical methods, while a Type B
evaluation is estimated using all available nonstatisti-
cal information such as instrument specifications, 
previous measurements, the observer’s personal judg-
ment, etc.  It should be stressed that uncertainties 
resulting from Type A and B evaluations do not corre-
spond to “random” and “systematic” errors.  For in-
stance, the ISO Guide states that “Type B standard
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uncertainty is obtained from an assumed probability
density function based on the degree of belief that an
event will occur,”11,12 implying that systematic errors
should acquire a probabilistic description, since they
are never precisely and accurately known.  This is not
the case in the traditional scheme.  Type A evaluations
are applicable to situations involving repeated obser-
vations with dispersion, while Type B evaluations are
applicable in all measurements.11,12 The general pro-
cedure for evaluating the overall uncertainty associat-
ed with a measurand is to list all the possible sources
of uncertainty and evaluate each individual contribu-
tion (using an appropriate pdf ).  This is referred to as
an uncertainty budget.  The overall or combined un-
certainty uc is then calculated using the usual uncer-
tainty propagation formula.11,12 A key point is that
any number of uncertainty components can be com-
bined in this way, whether they result from a Type A
or a Type B evaluation. 

Examples 
We present two examples below in which the quan-

tity of interest is directly determined from the 
measurement.  

(a) A single digital reading
The case of having only a single reading often oc-

curs in introductory laboratory courses.  The tradi-
tional approach offers no coherent framework, and
various ad hoc prescriptions are usually presented.
However, it is easily dealt with in a logically consistent
way in the probabilistic approach using the Type B
evaluation based on assigning rectangular, triangular,
or Gaussian probability density functions.  Thus, the
dichotomy between the so-called “classical” estima-
tion of uncertainty (½ least-scale division) for single
measurements and the formal “statistical” estimation
(standard deviation) for dispersed measurements does
not surface. 

Suppose a digital voltmeter with a rated accuracy of
�1% is used to measure the voltage across the termi-
nals of a battery [see Fig. 2(a)].  The best estimate of
the voltage is clearly 2.47 V.  In order to calculate the
overall uncertainty, we need to identify all the possible
sources of uncertainty, for example, the resolution of
the scale of the instrument, the rated accuracy, contact
resistance, environmental factors such as the tempera-
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ture, etc.  For illustrative purposes we will assume that
the uncertainties due to the scale resolution us and the
rated accuracy ur are the dominant contributors to the
combined uncertainty uc, and proceed to evaluate
each of them. 

In the traditional teaching practice, it is often
wrongly assumed that the rated accuracy is small
enough to be ignored.  Therefore, usually only a so-
called “least- count error” is attached to the reading,
so that the experimental result becomes “2.470 �
0.005 V.”  However, this expression does not have a
probabilistic meaning within the frequentist approach
because there is only a single recorded value.  In order
to describe the same experimental datum within the
probabilistic approach, use a suitable distribution,
such as a rectangular (uniform) pdf [see Fig. 2(b)],
with the best estimate at the center of the distribution
and the limits defined by the range of the last digit of
the digital scale.  Note that the area under the pdf is
always normalized to unity.  The standard uncertainty
us is then given by the square root of the variance (the
second moment of the distribution)11,12 or

Fig. 2. (a) A single digital reading.  (b) The uniform pdf used
to model the uncertainty due to reading the scale of the
instrument, expressing that the measurand could lie with
equal probability at any position within the interval. The
value of 0.0029 V is the standard uncertainty us associated
with the scale reading only. A similar uniform pdf models
the uncertainty due to rated accuracy ur = 0.0143 V, as well
as the combined uncertainty uc = 0.0146 V. The measurement
result is expressed as Vresult = 2.470 ± 0.015 V (see text).
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= 0.0029 V.

We now have to convert the rated accuracy of the
voltmeter, given as � 1%, to a standard uncertainty
ur.  This can be achieved by assuming a uniform pdf
(as suggested in the GUM11,12), in which case the
half-width of the distribution will be 

(0.01) (2.47) = 0.0247 V.  

The standard uncertainty ur is then given by 

ur = �
0.

�
02

3�
47
� = 0.0143 V.

The combined uncertainty uc is therefore 

uc = �u2�s +� u�2
r� = �(0�.0�0�2�9�)2� +� (�0�.0�1�4�3�)2� = 0.0146 V.

In practice this uncertainty estimate would be larger
if some of the other sources of uncertainty, neglected
here, are included in the uncertainty budget.  We
also note here the practice used in the GUM of
quoting two significant figures for all final uncertain-
ty estimates.  Therefore, the measurement result is
expressed as Vresult = 2.470 � 0.015 V.

Should one wish to emphasize the aspect of prior
information during teaching, one can proceed as 
follows.  Students are presented with a 3-V battery
and a voltmeter, and asked to describe (model) the in-
formation available about the measurand (V) before
measuring it.  Reasoning about the measurand before
obtaining data is an essential feature of the Bayesian
approach.  This stage aims at demonstrating that any
conclusion about the measurand has the form of an
interval, in this case from 0 V (depleted battery) to
nominal 3 V (full battery).  Students are then asked to
draw a graph of the probability of the statement “the
value of the voltage is x,” where x is in the interval [0,
3].  We have found that most students have little diffi-
culty in drawing a rectangular probability distribution
(similar to Fig. 2), an intuitive conclusion compatible
with the Bayesian principle of insufficient reason.  A
subsequent single measurement, as illustrated above,
serves to demonstrate how new information modifies

half of the width of the rectangle
����

�3�
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the existing knowledge of the measurand, reduces un-
certainty, and narrows the probability of the posterior
distribution.  Finally, successive measurements with
analogue or digital meters demonstrate that despite
the gradual reduction of uncertainty, absolute knowl-
edge of the measurand is not possible.  There are some
indications that such a teaching approach may be
fruitful when dealing with students’ initial tendency
to view single measurement results as “exact” or
“point-like.”4,7

The treatment outlined for dealing with direct sin-
gle measurements is of course applicable irrespective
of the type of instrument used.  As an extension to the
previous example, we can consider the case if the same
voltage were measured by an analog voltmeter.  Then
the scale uncertainty would again be modeled by a pdf
(e.g., uniform or triangular).  In this case, the limits of
the pdf depend on both the least-count division of the
instrument being used and the judgment of the exper-
imenter in reading the scale.  As before, this scale un-
certainty would be combined with the uncertainty
arising from the accuracy rating of the instrument. 

(b) An ensemble of repeated readings 
that are dispersed

Consider an experiment where we make 20 repeat-
ed observations of a time t under the same conditions,
for example, in measuring the period of a pendulum
with a stopwatch having a resolution of 1 ms and 
rated accuracy of 0.1 ms.  The 20 readings are summa-
rized and represented as a histogram of relative fre-
quencies [Fig. 3(a)].  According to the traditional 
approach, the measured values ti are modeled as values
of a random variable tmeasured.  The 20 values are con-
sidered to be sampled from an idealized Gaussian dis-
tribution, which would occur if the data were infinite
and the histogram bins were reduced to zero width.
From our sample we can estimate the parameters of
this idealized Gaussian through the familiar quantities
of the arithmetic mean t– of the N = 20 observations as

t– =  �
N
1

� �
N

i = 1
ti ,

and the experimental standard deviation s(t) of the
observations, 
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.

The calculations for the data in question yield that
t– =1.015 s  and s(t) = 0.146 s.

Based on the result from the central limit theorem
that the sample means are distributed normally, the
experimental standard deviation of the mean 
s(t– )11,12 is given by

s( t– )  =  �
�
s(t

N�
)

�,

which yields s( t– ) = 0.033 s in the present example.
In the traditional approach s( t– ) is often termed the
“standard error of the mean” and is denoted by �m. 

The interpretation of this result according to math-
ematical statistics is that “we are 68% confident that
the mean (of any future sample taken) will lie within
� 0.033 s of the measured mean of 1.015 s” (Conclu-
sion I).

Physicists tend to interpret Conclusion I in accor-
dance with their needs for making an inference about
the true value as follows: “we are 68% confident that
the ‘true value’ (of the measurand) lies in the interval
1.015 � 0.033 s” (Conclusion II).

However, Conclusion II cannot easily be justified
in the traditional approach since  t– and s( t– ) are cal-
culated from observed values, and can only summa-
rize what we know about the data since there is no for-
mal link between knowledge of the measurand (Con-
clusion II) and knowledge of the data (Conclusion I).
Thus, the measurement result cannot be represented
directly on Fig. 3(a) because the relative frequency his-
togram and the predicted Gaussian of infinite mea-
surements [Fig. 3(a)] are plotted against tmeasured. 

In the probabilistic approach, however, all infer-
ences about the measurand are expressed via the pdf of
Fig. 3(b), which is plotted against ttrue.  Using the con-
cepts of prior information and data at hand, we are
able to conclude in a straightforward and logically
consistent way the final result as follows: “The best es-
timate of the value of the time is 1.015 s with a 
standard uncertainty of 0.033 s, and there is a 68%
probability that the best estimate of the time lies with-
in the interval 1.015 � 0.033 s, assuming that the dis-
tribution of measured times is Gaussian.”  In practice,
of course, the uncertainty budget for this measure-

2

1

1( ) ( )
1

N

i
i

s t t t
N =

= −
− ∑
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ment of t would include a number of additional
sources of uncertainty, each of which would be esti-
mated using a Type B evaluation, so that the com-
bined uncertainty would be larger than 0.033 s.

When teaching the case of repeated measurements,
the most important objective is to bring students
around to the notion that an ensemble of dispersed
values obtained by repeated observations must be
modeled by theoretical constructs that represent the
ensemble as a whole.2,7 Regarding the shape of the
Gaussian, this can be made plausible by constructing
histograms of relative frequencies of simulated or ac-
tual data and showing how the distribution tends to-
ward a bell-like shape as the number of readings in-
creases and the bin width decreases.  Making the con-
ceptually correct link between relative frequencies,
based on past experience, and probabilities, for infer-
ence, is an important step at this stage.15

Conclusion
The ISO approach solves one of the key problems

associated with the traditional frequentist approach to
measurement, namely that the statistical formulae
lead logically only to statements about the data them-

Fig. 3. (a) Distribution of relative frequencies for the time
readings tmeasured. The dotted line represents the predicted
Gaussian distribution of the population from which the 20
readings were sampled. (b) A Gaussian pdf used to model
the measurement result. The final result tresult indicated
assumes that all other sources of uncertainty are negligible
(see text).
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selves.  Therefore, it is not valid to make the logical
jump that is usually made in laboratory manuals to in-
terpret a standard error as a standard uncertainty.  Stu-
dents (and others) have difficulties understanding this
discontinuity in logic.  The probabilistic approach, as
outlined, leads directly to inferences about the mea-
surand in a natural way, in both cases of single and 
repeated measurements.  In addition, representing the
states of knowledge graphically as pdfs, and not as
numbers or intervals, provides a persuasive and 
consistent explanatory framework for all cases of mea-
surement.

Experimentation and measurement lie at the heart
of physics, and it is important that students develop
an understanding of these concepts.  However, the
way in which these have been dealt with does not ap-
pear to have been effective.  Two possible reasons are,
first, that students’ prior knowledge about the nature
of measurement has not been taken into account and,
second, that there has been no logically consistent
framework that could be used to teach the basic con-
cepts.  By adopting the probabilistic approach, the lat-
ter can be effectively addressed (apart from the fact
that this is what research scientists have to adhere to!).
In addition, the guidelines suggested by the ISO, such
as the concept of an uncertainty budget and the level
of calculational detail to be reported, should also assist
pedagogy.  It should be noted that there now exist
software packages16 that can be used to perform the
sometimes tedious calculations required for a given
uncertainty budget.

We argue that by adopting the view that the intro-
ductory laboratory course should be focused on exper-
imentation and intelligent data analysis based on
probability theory, the experimental aspects of physics
can be placed at the center of the course rather than
relegated to an “add on” to the theoretical aspects.
The concepts of probability and uncertainty should
be addressed as early as possible in the teaching as fun-
damental to physics, highlighting the uncertain and
tentative, yet quantifiable, nature of scientific knowl-
edge.  The groups involved in the present paper are
developing and refining various laboratory teaching
materials based on this approach.

Finally, the language of probabilistic metrology of-
fers access to other areas of physics such as quantum
mechanics and statistical mechanics, as well as to cur-
400
rent technologies such as image processing.  From a
broader perspective, an understanding of the interpre-
tation of data, and hence of evaluating “scientific evi-
dence” is an essential life skill in the present informa-
tion age.  
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