19.40. Model: The ideal gas in the Carnot engine follows a closed cycle in four steps. During the isothermal expansion at temperature T_H , heat Q_H is transferred from the hot reservoir into the gas. During the isothermal compression at T_C , heat Q_C is removed from the gas. No heat is transferred during the remaining two adiabatic steps. **Solve:** The thermal efficiency of the Carnot engine is

$$\eta_{\rm Carnot} = 1 - \frac{T_{\rm C}}{T_{\rm H}} = \frac{W_{\rm out}}{Q_{\rm H}} \Rightarrow 1 - \frac{323 \text{ K}}{573 \text{ K}} = \frac{W_{\rm out}}{1000 \text{ J}} \Rightarrow W_{\rm out} = 436 \text{ J}$$

Using $Q_{\rm H} = Q_{\rm C} + W_{\rm out}$, we obtain

$$Q_{\rm isothermal} = Q_{\rm C} = Q_{\rm H} - W_{\rm out} = 1000~{\rm J} - 436~{\rm J} = 564~{\rm J}$$