next up previous
Next: About this document ...

Useful Formulas - Exam II




Motion definitions

displacement: $\Delta\textbf{r}\equiv\textbf{r}_f-\textbf{r}_i$  
velocity: average, $\bar{\textbf{v}} \equiv \frac{\Delta \textbf{r}}{\Delta t}$ instantaneous, $\textbf{v} \equiv \frac{d \textbf{r}}{dt}$
acceleration: average, $\bar{\textbf{a}} \equiv \frac{\Delta \textbf{v}}{\Delta t}$ instantaneous, $\textbf{a} \equiv \frac{d \textbf{v}}{dt}$
radial acceleration: $a_r=\frac{v^2}{r}$  
tangential acceleration: $a_t=\frac{d\vert\textbf{v}\vert}{dt}$  




Kinematic equations ($\mathbf{a}$ is constant)

$\textbf{v}_f=\textbf{v}_i+\textbf{a}\,t$ $v_f^2=v_i^2+2\,\textbf{a}\cdot\textbf{r}$
$\textbf{r}_f=\textbf{r}_i+\textbf{v}_0\,t+\frac{1}{2}\textbf{a}\,t^2$ $\textbf{r}_f=\textbf{r}_i+\frac{1}{2}(\textbf{v}_i+\textbf{v}_f)\,t$




Trigonometric formulas

$ \sin(\theta) =\frac{opp}{hyp} $ Law of sines: $ \frac{\sin (\alpha )}{a}=\frac{\sin (\beta
)}{b}=\frac{\sin (\gamma )}{c} $
$ \cos (\theta )=\frac{adj}{hyp} $ Law of cosines: $ c^2=a^2+b^2-2\,a\,b\cos(\gamma)$
$ \tan (\theta )=\frac{opp}{adj} $  
Identities  
$ \sin ^{2}(\theta )+\cos ^{2}(\theta )=1 $ $ \sin (A\pm B)=\sin (A)\cos (B)\pm \cos (A)\sin (B) $
$ \sin (2\theta )=2\sin (\theta )\cos (\theta ) $ $ \cos (A\pm B)=\cos (A)\cos (B)\mp \sin (A)\sin (B) $
$ \cos (2\theta )=\cos ^{2}(\theta )-\sin ^{2}(\theta ) $  





Jeffrey R. Simpson
2001-06-27