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. Observations of Planetary Motion

=
s Brahe used instruments that he

invented to make accurate
observations of planetary motion

= Tycho Brahe (1546-1601), a Danish
nobleman, was the last of the
“naked eye” astronomers

= Kepler analyzed Brahe’s data and
formulated three laws of planetary
motion

= Johannes Kepler (1571-1630), a German
astronomer, was Brahe’s assistant
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| Kepler’s Laws

=1
= Kepler's 1st Law:

All planets move in elljptical orbits with the Sun at one focus

= Kepler's 2nd Law:

The radius vector drawn from the Sun to a planet sweeps
out eqgual areas in equal time intervals

= Kepler's 3rd Law:

The sguare of the orbital period of any planet is proportional
to the cube of the semimajor axis of the elliptical orbit
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. Notes on Ellipses $_ N T

=T

=

= F and F, are each a focus of the \ A 2 /
ellipse N\ 4

= The sum of lengths from the foci to
any point on the ellipse is a constant, i.e. r; + r, = constant

" The longest distance through the center is the major axis
= gis the semimajor axis

= The shortest distance through the center is the minor axis
= bDis the semiminor axis

= The eccentricity of the ellipse is defined as e = ¢/a
= Foracircle, e=0
= The range of values of the eccentricity for ellipsesis0 < e< 1
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| Kepler’s First Law

j- Kepler's 1st Law is a direct result of the /nverse
sqguare nature of the gravitational force

» Elliptical orbits are allowed for bound objects
= A bound object repeatedly orbits the center

« A circularorbit is a special case of the general
elliptical orbits

s Unbound objects could have paths that are
parabolas (e = 1) and hyperbolas (e > 1)
= An unbound object would pass by and not return
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| Orbit Examples
) = Earth’s orbit has a very

small eccentricity
. 6.y = 0.0167 \\

= Pluto has the highest
eccentricity of any planet B il

= Gpyyo = 0.25

(a)
Orbit of

= Halley’s comet has an orbit . e

with a very high eccentricity
N eHa”ey,S comet — 0.9/ Mo,
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Kepler's Second Law

= Kepler's 2nd Law is a consequence of the
conservation of angular momentum

= Angular momentum is conserved because there is no
tangential force

= Geometrically, in time gt the radius vector sweeps
out the area AA = V2rvAtsing

Area AA is swept out

. during Af.-.,..‘ B\ #% Ko = pht
dA 1 . mrvsin /L Qe
—=—rvsin ff = =
at 2 2m 2m

= constant

= The law applies to any central force, whether 1/72 or not
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| Kepler’s Third Law

- —

= Kepler's 31 Law is a consequence of the /nverse
sqguare law

= For most planets, the orbits are nearly circular and
we can then use the radius of the orbit rather than
the semimajor axis to prove the Third Law
= The gravitational force supplies a centripetal force

GM_M,_ v\, GM,, 2
J =T = M, = V= Also, T=S

) o Planet r r Vv
2 2
= T° :[ im ]r? More generally, T° =£ im ja3
GM, GM,
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| Newton’s Law of Gravitation

-

=« Every particle in the Universe %ﬂ
attracts every other particle with  r,, /,ﬁ\ﬁ)
a force proportional to the T m

product of their masses and @’
/nversely proportional to the 2
distance between them

my

F12 =-G mrznz i\-12

I

= G=6.674 x 10-11 N-m2/kg? is the wniversal gravitational
constant

= F;, = -F,;: Newton’s 3rd Law action-reaction pair
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= In vector form,



Discovery of Newton’s Laws

1500

1550

1600
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1700

Copernicus'’s heliocentric hypothesis

Brahe’s observations
of planetzgy motion

Galileo’s experiments Kepler's laws of

and theory planetary motion
v

Newton’s Iaws of —_— Newton’s universal

motion law of gravitation
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| Apple and the Moon

-

= Newton compared the acceleration of the Moon in
its orbit with the acceleration of a falling apple

- Moon: g, = Vu _ 4 2rM _ 4m7(3.84x10 2m)
[, T, (27.3 days)

= Apple: g, =9.80 m/s’

=0.00272 m/s’

= Ratio of forces: — = ;

0.00272m/s 1 (R
g, 9.80m/s> 3600

M

= But it took Newton 22 years to publish the 1/72 law

= He needed to develop calculus to show that a sphere
behaves like a point mass at its CM
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| G versus g

) = Always distinguish between Gand g

n Gis the universal gravitational constant
« It is the same everywhere

= g is the magnitude of gravitational field, i.e.
the gravitational force per unit mass
= g = 9.80 m/s? average at the surface of the Earth
= g will vary by location
« g differs for each planet
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Mirror ,

Measuring G ol Light

source

1

= G was first measured by
Henry Cavendish in 1798

s The forsion balance shown
here allowed the attractive
force between two spheres
to cause the rod to rotate Torsion Balance

= The mirror amplifies the motion
= It was repeated for various masses

s Gis the /east well-known constant of nature
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. Finding gfrom G

=
= The magnitude of the force acting on an object of

mass m in free fall near the Earth’s surface is mg

= This can be set equal to the force of universal
gravitation acting on the object

= You can “weigh” the Earth using values of gand G
M = gR:  (9.80 m/s*)(6.37x10° m)*

- ———=5.98x10" kg
G 6.67x107 Nm“/kg
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Problem 1: Planet Mass

As an astronaut, you observe a small planet to be spherical.
After landing on the planet, you set off, walking always straight
ahead, and find yourself returning to your spacecraft from the
opposite side after completing a lap of 25.0 km. You hold a
hammer and a feather at a height of 1.40 m, release them, and
observe that they fall together to the surface in 29.2 s.

Determine the mass of the planet.

25000 m

From the walk, 2rR=25000m. R= 5 =3.98x10°m
T
From the drop, Ay = 1 gt’ = 1 g(29.2 s)2 =1.40m, g= 2(140 nz) =3.28x107° m/s’ = GI\!'
27 2 (29.25) R
2 -3 2 3 2
v~ OR'_ B28x10° mis)B.98x10° m)’ oo o

G 6.67x10"" N m’/kg’
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. g Above the Earth’s Surface

=3
= If an object is some distance  Aliwde 2 (km) g (m/s?)

/1 above the Earth’s surface, 1 000 733
rbecomes R-+ A 2 000 5.68
3 00( 4.5:
__GM, o o
g= > 4 000 3.70
(RE + h) 5 000 3.08
: - . 6 000 2.60
0 gc_lecreases with increasing =060 o
altitude 8 000 1.93
s As r— oo, the weight of the 9 000 1.69
object approaches zero 10 000 1.49
50 000 0.13

oo (0
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| Geosynchronous Satellite

=

= A geosynchronous satellite
remains over the same point _ooea? T\
on the Earth ! (s N

= From Kepler's 3rd Law, we |
can find the A for which the
satellite has a period of 1 day

T :( s j(RE +h)

GM.

(24 hr) = f“ — (6.37x10°m+h) = h=35.8x10°m
6.67x10" x5.98x10
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| The Gravitational Field

=1
s The gravitational fieldis the gravitational force

experienced by a test particle placed at that point
divided by the mass of the test particle

F, GM |
g = = — > I
m r
= When a particle of mass mis placed at a point
where the gravitational field is g, the particle
experiences a force F, = mg
= g does not necessarily have the magnitude of 9.80 m/s?
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| The Gravitational Field, cont

= VL
= A gravitational field exists at every ! p
point in space \\ l /’/
= Points in the direction of the N - Y
acceleration a particle would -
experience, if placed in that field // T \\
= The magnitude is that of the free- A A %
fall acceleration at that location )

= The gravitational field describes the effect that any
object has on the empty space around itself in
terms of the force that woul/d be present /fa
second object were somewhere in that space
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Gravitational Potential Energy

e Radial segment

= The work done by F along
any segment is

dW =F-dr = F(r)dr

= [he total work is
' TGM_._m




| Gravitational Potential Energy, cont

= AU is the negative of the

Work done : if Farth

Uf—U,:—GI\/IEm[l—IJ

ror |

u !

= We associate the gravitational |
potential energy with | Ri

0 |

U =-—rel i

r - GMgm| i

« U(r) =0is chosen at r= « Ry
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Gravitational Potential Energy, cont

‘
= For any two particles, the gravitational potential
energy becomes

U=-

Gmm,

r

=« The gravitational potential energy between any two
particles varies as 1/r while the force varies as 1/r2

= The potential energy is negative because the force is
attractive and we chose the potential energy to be zero
at infinite separation

= An external agent must do positive work to /ncrease the
separation between two objects
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. Grav Potential Energy Near Earth

T
= At a small distance A above the Earth’s surface,

~GMm  GM.m  -mgR.
R_+h R(1+h/R) (+h/R))

n(n-1) 2
2

U :—ngE(HRLj = —-mMgR, 1—L+(Lj +...

E

For small X, (1 + X)n =14+ nx+

U =~ -mgR_ + mgh
= The potential difference between two points at Aand A +yis

AU =mg(h+y)—mgh = mgy
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. Energy and Satellite Motion

) = Assume an object of mass /m moving with a
speed vin the vicinity of a massive object of
mass M (>> m)

= Also assume Mis at rest in an inertial frame

= The total energy is the sum of the system’s
kinetic and potential energies

E:lmvz—GMm
2 r

= In a bound system, £ is necessarily less than 0

9-May-2 Paik p. 24



-

= The gravitational force causes a
centripetal acceleration

GMm v’
re r

= The energies are related by

U=—GMm,K:lmW:GMm:
r 2 2r
E=K+U=+2-_SMM_,
2 2r

9-May-2 Paik

Energy in a Circular Orbit

U = In an elliptical

9) orbit,
E:_G-Mm
2a
p. 25



| Satellite Orbit Transfer

e Energy

= TO raise a satellite from a
lower altitude () circular ~_Kinetic energy K
orbit to a higher altitude
(5») one, energy must be ;- b?

provided by the amount

AE:G-Mm 11
2 \r

Total energy

I
_ 1
\:E—K'FUg—iUg
I
i

Potential energy U,

= The satellite must climb “up noon

hill” Energy AE must be added to move
a satellite from an orbit with radius
r, to radius r,.

9-May-2 Paik p. 26



| Satellite Orbit Transfer, cont

. ] iring the rocket tangentially
u A fO/‘W&/‘d th ruster IS f| red to the circle here moves the
. . . satellite into the elliptical orbit.
to increase the kinetic Kinetic cnergy is '

. transformed 1nto
energy and put the satellite poeniial cnerey

as the rocket

|nt0 an e///pl'/'Ca/OI’blt moves “uphil}.”

= Upon reaching the desired
altitude, a second firing of  midal orvit

a forward thruster Desired orbit

circularizes the orbit Elgitor] __

u The kinetic energy inCI‘easeS orbit A second firiri:g here transfers
tO Satisw /(: _1/2U it to the larger circular orbit.
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| Two-Particle Bound System

-3
= Both the tota/ energy and the angular momentum

of a two-object system are constants of the motion

1 M 1 M,
= Total energy is £ =—mv’ — GMim = —mvi _ M
2 r P vy

= Angular momentumis L =1 xmv, =r. xnmv,

= The absolute value of £ is the binding energy of
the system

« If an external agent supplies energy larger than the
binding energy, the system will become unbound
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| Problem 2: Collision with a Comet

=
A comet of mass /5 is making a totally
inelastic head-on collision with Earth with
a velocity of —2v, where m and v are the
mass and orbital velocity of Earth. Earth
was originally in a circular orbit around the
Sun with radius R. Ignore the effect of
the gravitational interaction of the comet
with Earth (or the Sun) before collision.

(a) What is the new orbital velocity of Earth, v/, right after the

collision? (b) Show that the new orbit of Earth around the Sun
is an ellipse with R__, = Rand R, = R/7. (c) What is the new
orbital period of Earth?
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| Problem 2, cont

=3
(a) Linear momentum 1s conserved inelastic collision.

m m 3 6 1
mv+—(=2v)=| m+— V', =mv=—mv', v'=—v
5 5 5 5

(b) Since velocity 1s reduced, the orbit becomes elliptical
with R =R andv_ =V.

In the new orbit, angular momentum and energy are conserved :

mv. R =mv_R =lva,v _VvV R

max min min max max 2 R
'min

. GMm 1£v Rjz GM 1(v)2 GM
_rTNmax - _rrN_— | A = _R— 2 TN

min min

9-May-2 Paik



| Problem 2, cont

T
1 [ R GM| R
SV —1|= -1
E; F%iﬁl FQ anhl
Substituting v* = GM : R +1=8, R = B
Fz F%nhl ’7
(¢) Thenew semimajoraxisis a'= 1 (Rmax+ Rmm) = l(R+ Bj — 4 R= 4 a
2 2 7) 7

' 3/2 2/3
FromKepler's 3rd law, 7'= T(ij =365 day{g) =157 days
a
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. Escape Speed

= An object of mass m is projected upward from

the Earth’s surface with an initial speed v,

= Total energy at takeoff: E =%mvi2 _GMem

« Total energy at max altitude: E, =- E

11
R R +h

=« Energy is conserved: v’ =2GM E[

= [0 escape the Earth to /7 = oo,

\/ZGME
V. =
Re

9-May-2 Paik




. Escape Speed, cont

7
= The table gives escape speeds from Escaps Speeds from (e
] Surfaces of the Planets,
various planets and the Sun Moon. and S
= Complete escape from an object is Planet Vese (km/s)
not I‘ea||y pOSS|bIe Mercury 4.5
= Some gravitational force will always be et 105
felt no matter how far away you can get ~ Fath e
Mars 5.0
= This explains why some planets Jupiter 60
have atmospheres and others do not """ o
= Lighter molecules have higher average Neptune 94
speeds and are more likely to reach Pluto 1.1
escape speeds Moon 2.3
Sun 618
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. Problem 3: Voyager
=
Voyagers 1 and 2 surveyed the surface of Jupiter's moon Io and
photographed active volcanoes spewing liquid sulfur to heights
of 70 km above the surface of this moon.

Find the speed with which the liquid sulfur left the volcano. Io's
mass is 8.90 x 1022 kg, and its radius is 1820 km.

Since mechanical energy of sulfur is conserved,
1, GMm GM m
nmv, — =0+

2 R R +h

Vi2 — 2GM| : - 1 = 2(667X1011X89OX1022{ 1 P I 6)
R R+h 1.82x10° 1.89x10

V. =492 m/s
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. Problem 4: Satellite Air Resistance

=

Many people assume that air resistance acting on a moving
object will always make the object slow down. It can actually
be responsible for making the object speed up. Consider a
100-kg Earth satellite in a circular orbit at an altitude of 200
km. A small force of air resistance makes the satellite drop
into a circular orbit with an altitude of 100 km.

(@) W
(b) W
(c) W
(d) W
(e) W
(F)W

nat is t
nat is t
nat is t
nat is t
nat is t

9-May-2

ne initial speed?
ne final speed?
ne initial energy?
ne final energy?
e energy loss?

nat force makes the satellite's speed increase?
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| Problem 4, cont

I —

M-m mv? GM
= and v= =
r r r

. \/(6.67><10“ N m2/kg?)(5.98x10% kg)
| 6.37x10° m +2.0x10° m
(6.67x107"" N m?/kg®)(5.98x10** kg)
(b) Vf — 6 5
6.37x10°m+1.0x10°m
So the satellite speeds up as it spirals down the orbit.

(a) For both circular orbits,

=7.79%x10° m/s

=7.85x10° m/s

GM:m
2r

(c) The total energy of the satellite - Earth systemis E=K +U =-

11 2 2 24
= __(6.67x10" Nm?/kg?)(5.98x10* kg)(100Kg) _ 1/ 1o |

! 2(6.37x10° m + 2.0x10° m)
-11 2 2 24
d) E. _ (6.67x10""Nm /kg )(5.98x10 5 kg)(100 kg) — 3.08x10° ]
2(6.37x10°m+1.0x10° m)
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| Problem 4, cont

-
(e) AE=E, —E =(-3.08x10° J)—(=3.04x10° )= —4.69x10’ J

The spacecraft loses energy as 1t spirals down the orbit.

(f) The only forces on the satellite are the force of air resistance,

1 g
F=—DpVv’ ¥ —
2 PR LR
which is comparatively small, and the force s e f S
of gravity. Because the spiral path is not g B

perpendicular to the gravitational force, the
radial force pulls on the descending satellite

to do positive work and make its speed increase.
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. Problem 5: Launching Payload
=1
(a) Determine the amount of work that must be done on a
100-kg payload to elevate it to a height of 1000 km above
the Earth's surface, i.e. without orbital motion.

(b) Determine the amount of additional work that is required
to put the payload into a circular orbit at this elevation.

(a)W=Uf—Ui_—GM M GM m_GMrr{ j
r ! R R+y

~[ 6.67x10" M (598><1024kg)(100kg)( L1 )_gs50x10°7
kg? 6.37x10°m 7.37x10° m

(b) An additional work must be done to provide the kinetic energy.

U -11 2 2 24
Ko "t _ GM_ m _ (6.67x107 Nm“/kg )(5.968><10 kg)(100 kg) 2 71x10° ]
2 2(R+Yy) 2(7.37x10° m)
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Event
horizon

| Black Holes o~

N / Black \
= A black holeis the remains of a star ﬁ,f hole
that has collapsed under its own | /
gravitational force \ &
. N /
= The escape speed for a BH is very large q /
due to the concentration of a large mass e T

into a sphere of very small radius

= The escape speed exceeds the speed of light so radiation cannot
escape and it appears black

= The critical radius at which the escape speed equals cis
called the Schwarzschild radius R

« The imaginary surface of a sphere with A is called the event horizon
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| Black Holes and Accretion Disk

-
= Although light from a BH cannot escape, light from events
taking place near, but outside the event horizon of, the BH
should be visible

= If a binary star system has a
BH and a normal star, the
material from the normal star
can be pulled into an
accretion disk around the BH

= The high-temperature

An ordinary star on the left and
) _ a black hole on the right
material emits x-ray surrounded by an accretion disk

= There is evidence that supermassive BHs exist at the
centers of galaxies
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