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| Acceleration

) s Average acceleration of a moving object Is

defined as .
S Av

H'Ln-'g T E

= As an object moves, its velocity vector can
change in two possible ways:

= The magnitude of the velocity (speed) can
change, or

= The direction of the velocity can change
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. Example: Through the Valley

, A ball rolls down a long hill, through the valley,
and back up the other side.

Draw a complete motion diagram of the ball.

a is parallel to v.
Only speed is changing

L a is perpendicular to v.

Both speed and direction are changing. Only direction 1s changing.
d has components parallel and perpendicular to V.
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Projectile Motion

The vertical component
of velocity decreases by

o The horizontal
The ball’s trajectory |[REEERN second.

component of velocity

&

e R o ‘-‘ is constant throughout

L
LJ

the motion. §
¥ a parabola. y oo ;

—9.8

19.6 a, = —9.8 m/s pers

—X
9.8

Velocity vectors are .
shown every 1 s. v
Values are in m/s. When the particle returns
to its initial height, v_is

opposite its initial value.
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. Projectile Motion, cont

) = Projectile motion is made up of two
Independent motions:

= yniform motion in the horizontal direction,

= free-fall motion In the vertical direction

= The kinematic equations that describe these
two motions are

Xp = x; + v, Ar Ve = Y T vy Ar - 18 (A1)

1'/1' .

tx

= v,, = constant Viy = Viy — & Af
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. Example: A Stunt Man

T

A stunt man drives a car off a 10.0-m high cliff at a
speed of 20.0 m/s.

How far does the car land from the base of the cliff?

y

Xos Yo Lo

= Although the horizontal
and vertical motions are
Independent, they are
connected through time ¢

Known Find
Xo=0m vy, =0m/s 17,=0s S
vo = 10.0m vy, = v, = 20.0 m/s
a, = 0 m/s? a,=—-g y,=0m
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. Example: A Stunt Man, cont

) = The kinematic equations are:

‘Il —_ ‘I'D —|_ VU.T( I | T I U) —_ V‘DI 1
=0 = v+ v _ 1 - _ 2 _ ., 1 5 2
i =0 =y + vo,(t;y — 1p) — 381 — f)” = Yo — 281

= We can use the vertical equation to determine the
time £ needed to fall distance y;:

Ifﬂ Ia’IZ( 10.0 m)
Iy = .'I —_— .'I
"N ¢V 0.80 m/s?

= 1.43s

= We then insert this £ to find the distance traveled:

x; = voly = (20.0m/s)(1.43s) = 28.6 m
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| Problem Solving Strategy

) m Visualize: Use a pictorial representation
= With the x-axis horizontal and the y~axis vertical
= Define symbols, identify what needs to be found
= So/ve: Kinematic equations are:
Xg = X; + v, At Vi = N TV At — %S (Af )2
Vi, = Vi, = constant Viy = Vi — 8 At
= Acceleration is known: a,= 0, g,= —-g

= FInd Af from one component, and use the value
for the other component
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| Relative Motion

o Yelosityd = An object’s velocity in one
| v frame can be transformed
/ into another frame:
® r \( V=V'+V or V'=vVv-V
—V (Galilean transformation of
v =V velocity)
y v = In terms of components:
; | Velocity ¥ V. =V +V Vi =v =V
: —V = in frame S’ X X X X X
| =V +V of Vi =v -V
Vy =V y TV y vy Vy
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| Example: A Speeding Bullet

1
The police are chasing a bank robber. While driving at

50 m/s, they fire a bullet to shoot out a tire of his car.

What is the bullet’s speed as measured by a TV
camera crew parked beside the road?

Let the Earth be frame S, and a frame attached to the police
car be S'. S’ moves relative to S with V,, = 50 m/s.

The gunisin S’. So the bullet travels in S’ with .= 300 m/s.

The camera crew is in S. The bullet’s velocity in S is:
V. =V +V =300m/s+50m/s =350 m/s
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| Example: Flying to Cleveland |
-1
Cleveland is 300 miles E of Chicago. A plane leaves Chicago
flying due E at 500 mph. The pilot forgot to check the weather
and doesn’t know that the wind is blowing to the S at 50 mph.

(a) What is the plane’s ground speed? (b) Where is the plane
0.60 h later, when the pilot expects to land in Cleveland?

v’ relative to air

Chicago Cleveland

(a) The plane’s velocity
relative to the ground is e

V=04V = (5001 —50 [)mph " e
The plane’s ground speed is V= \/Vi +V, =502 mph
(b) After flying 0.6 h, the plane is at (300 mi, —30 mi)

V of air
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. Example: Flying to Cleveland 11

-

A wiser pilot flying from Chicago to Cleveland on the same day
plots a course that will take her directly to Cleveland.

(a) In which direction does she fly the plane? (b) How long
does it take to reach Cleveland?

] ) V' relative to air I
(a) Plane’s velocity in earth’s frame: \ 7 of ir
7]
— — Chi
V. =V +V = (500 mph)cosf "~ — %%“

' . . relative to ground
v, =V' +V, =(500 mph) sind — 50 mph

Cleveland

. 50 mph
From v, = 0, proper heading is 0 =sin" TP | = 5740
Y 500 mph

=0.604 h

(b) The time it takes: t 300 mi

(14 s longer) N (500 mi) cos 5.74°
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| Circular Motion Paricle.

Arc length
I )
= Circular motion can be described oion H "
In terms of the angular position & SS—"

circular motion

= Usually we will measure & in radians:

@ (inrad)=S/r1

v Position at
= 21t rad = 360° til\ne .=t + Ar

= Angular velocity is defined as th
rate of change of & Position
O L at time 1,
AG A6 do o

®,,=—— or @=Ilm—-=

At A0 At dt 7
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| Circular Motion, cont

T
= We will also define an angular acceleration, «
Aw Aa) do
a,, =—— or a=lm
At -0 At it

= For uniform circular motion (UCM), w Is constant
and hence o = 0.

= This does not mean a = 0.
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| Uniform Circular Motion

]- UCM Is a constant speed

The velocity 1s tangent to the

are all the same length.

mOtlon |n a Cer|e “,.-circ]c.Thc velocity vectors

a)—Ae 2T (T : the period)

At T

= The speed of a point on

the circle iIs

01rcumference 271l
V= = ol

period T

= The velocity vector Is
tangential to the circle

=l
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. Example: Roulette Wheel

-
A small roulette ball rolls ccw around the inside of a 30-cm
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

(a) What is the ball's angular velocity?
(b) What is the ball's position at £= 2.0 s. Assume &,= 0.

(a) Period of the ball's motion is 7= 0.60 s.
2m rad

0.60s

Angular velocity is positive and @ = =10.47 rad/s

(b) Ball's position at At=2.0s is
0. =0rad +(10.47 rad/s)(2.0s) =20.94 rad =3.333 x 2n rad

We subtract an integer number of 2z rad:
0.'=20.94rad -3 x2nrad =2.09 rad =120°
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| Uniform Circular Motion, cont

I . . . The instantaneous
= An aCC6|eratI0n exIsts since velocity v is perpendicular

to ¢ at all points.

the direction of the velocity v
vector Is changing

= The acceleration is always
perpendicular to the path and
points to the center

= This acceleration iIs called

the centripetal acceleration

= The magnitude of the 52

centripetal acceleration is 4, =—
Vv
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Centripetal Acceleration

= From geometry,

dv_dr dv——dr

VA r
_dv vdr v
dt rdt r

= The direction Is
toward the center:
V2

g =
I
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—

= From geometry,
V =-Vsind
V, =Vcosd

where vis a constant.

= Using calculus,

= av, = —\/COS «9% =
% dt dt
dv
a, = Y = —Vsiné’% =
dt dt
7-Feb-08

Centripetal Acceleration, cont

|1~

V

Particle

Angular
positiony

Arc length

S

5 Center of
\' ctreular motion
——co0s/,
I
2
VA =~ V.
——sinf a. =——-IF
r I
Paik



Example: Ferris Wheel

—

A carnival Ferris wheel has a radius of 9.0 m and
rotates 4.0 times per minute.

What acceleration do the riders experience?

Period iIs 7= Y42 min = 15 s.
27l B 21(9.0 m)

A rider's speed is V= =3.77m/s
T 15s
Therefore, the centrifugal acceleration is
2 2
Vv _ (3.77 m/s) 1 6m/s

r 9.0 m
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Non-uniform Circular Motion

|
a

= The magnitude of the velocity could also be
changing
= If the speed is changing, this is /70t a Uniform
Circular motion

= In this case, there would be a 7angential
acceleration as well
d|v

= The magnitude of this acceleration is g, = o
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| Total Acceleration

‘ = Tangential acceleration:

a=a, + a

d|v|
a, =——
dt
s Radial acceleration:
V2
a, =—d, =——
V

= [he total acceleration:

_ 2 2
a—\/ar +a
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| Total Acceleration, cont

) = Define unit vectors:
f : radially outward

N

¢ tangent in the
direction of
Increasing &

s [otal acceleration is

— v %
a=a +a = ——r
r

dt

= The sign of a, must be provided manually
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. Example: Circular Rocket Motion
G
A model rocket is attached to the end of a
2.0-m-long rigid rod. The other end of the
rod rotates on a frictionless pivot, causing
the rocket to move Iin a horizontal circle.
The rocket accelerates at 1.0 m/s? for 10 s,
starting from rest, then runs out of fuel.

(a) What is the magnitude of a at 1= 2.0 s?

(b) What is the rocket’s angular velocity, In
rpom, when it runs out of the fuel?
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| Circular Rocket Motion, cont

3
(a) The rocket creates a tangential acceleration a, = 1.0 m/s.

At t=20s, v= 1+ aAft= 2.0 m/s. The rocket
then acquires a radial acceleration

2 2 N
v (2.0 m/s) 2.0 m/s?, ‘
r 2.0m

a=,a +a’ = \/(1.0 m/s’)’ +(2.0m/s*)’ =2.2m/s*

(b) The tangential velocity after 10 sis v= 1, + gAt= 10.0 m/s.

v 10.
Thus the angular velocity is @ =—= 0.0mJs =5.0rad/s
r 2.0m
Converting to rpm, @ = 5.0 rad X Lrev X 60 =48 rpm
ls 2nrad 1min
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| Linear Versus Angular Motion

"

Linear Motion

Angular Motion

Displacement AS AD
. AS . As ds A6 . A6 dé
Velocity V. =— V=lim—= o =—, ®=1im -
At a0 At dt T At o0 At dt
. AV . Av dv Aw . Aw do
Acceleration a =—_a=Ilim = o =—, a=lim =
At MS0AL dt | T At MO0 AL dt
V=V, + aAt = w, + at
Kinematic
equations As=V,At + a(At)’ A0 = o, At +; a(At)
V' =V +2aAS o' =w +2aA0
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| General Principles
T

The instantaneous velocity

v = dr/dt y

1s a vector tangent to the trajectory.

The instantaneous acceleration is / 4

a = dv/dt

ay, the component of ¢ parallel to
v, 1s responsible for change of speed. a |, the component of «
perpendicular to v, is responsible for change of direction.
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. General Principles
T

Relative motion

Inertial reference frames move
relative to each other with constant
velocity V. Measurements of position
and velocity measured in frame S are
related to measurements in frame S’
by the Galilean transtformations:

I f

x =x— Vi v, = v, — V,

}}r _ 1* — V*;I 1.;;: — F‘I.‘ — VT

7-Feb-08 Paik




. Important Concepts
T

Uniform Circular Motion

Angular velocity w = d6/dt.
v, and w are constant:

=

v, = wr

The centripetal acceleration points toward the center of the circle:

It changes the particle’s direction but not its speed.
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. Important Concepts

- —

Nonuniform Circular Motion “

Angular acceleration a = dw/dt.
The radial acceleration

-2

¥
v P

a, — — W r

B
changes the particle’s direction. The tangential component
a, = ar

changes the particle’s speed.
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. Applications

T
Kinematics in two dimensions

If @ 1s constant, then the x- and y-components of motion
are independent of each other.

xp = x; + v, At + 3a,(Ar)?
ye =y + v, Ar + %ﬂ!_.r( Ar)?
vi. + a, At
viy T a,At

e
=
-
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. Applications

Projectile motion occurs if the object moves under the influence of only
gravity. The motion is a parabola.

e Uniform motion in the horizontal
direction with vy, = vycosé.

* Free-fall motion in the vertical
direction with a, = — g and vy, = vysinf.

* The x and y kinematic equations
have the same value for At.
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. Applications

i

Circular motion kinematics

e 2
Period 7= ——="—"
V w

s
Angular position 0 = —
B

w; = w;, + alAt
0; = 6, + w,At + sa(Ar)?

wi = w + 2a A
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Applications

Angle, angular velocity, and angular
acceleration are related graphically.

* The angular velocity is the slope
of the angular position graph.

* The angular acceleration is the slope
of the angular velocity graph.
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