

Spring, 2008

Ho Jung Paik

$$\vec{a}_{\rm avg} = \frac{\Delta \vec{v}}{\Delta t}$$

- As an object moves, its velocity vector can change in two possible ways:
 - The magnitude of the velocity (speed) can change, or
 - The direction of the velocity can change

Example: Through the Valley

A ball rolls down a long hill, through the valley, and back up the other side.

Draw a complete motion diagram of the ball.

Projectile Motion

- Projectile motion is made up of two independent motions:
 - uniform motion in the horizontal direction,
 - free-fall motion in the vertical direction
- The kinematic equations that describe these two motions are

$$x_f = x_i + v_{ix} \Delta t$$
 $y_f = y_i + v_{iy} \Delta t - \frac{1}{2}g(\Delta t)^2$ $v_{fx} = v_{ix} = \text{constant}$ $v_{fy} = v_{iy} - g \Delta t$

Example: A Stunt Man

A stunt man drives a car off a 10.0-m high cliff at a speed of 20.0 m/s.

How far does the car land from the base of the cliff?

 Although the horizontal and vertical motions are independent, they are connected through time t

The kinematic equations are:

$$x_1 = x_0 + v_{0x}(t_1 - t_0) = v_0 t_1$$

$$y_1 = 0 = y_0 + v_{0y}(t_1 - t_0) - \frac{1}{2}g(t_1 - t_0)^2 = y_0 - \frac{1}{2}gt_1^2$$

• We can use the vertical equation to determine the time t_1 needed to fall distance y_0 :

$$t_1 = \sqrt{\frac{2y_0}{g}} = \sqrt{\frac{2(10.0 \text{ m})}{9.80 \text{ m/s}^2}} = 1.43 \text{ s}$$

• We then insert this t_1 to find the distance traveled:

$$x_1 = v_0 t_1 = (20.0 \text{ m/s})(1.43 \text{ s}) = 28.6 \text{ m}$$

Problem Solving Strategy

- Visualize: Use a pictorial representation
 - With the x-axis horizontal and the y-axis vertical
 - Define symbols, identify what needs to be found
- *Solve:* Kinematic equations are:

$$x_f = x_i + v_{ix} \Delta t$$
 $y_f = y_i + v_{iy} \Delta t - \frac{1}{2}g(\Delta t)^2$
 $v_{fx} = v_{ix} = \text{constant}$ $v_{fy} = v_{iy} - g \Delta t$

- Acceleration is known: $a_x = 0$, $a_y = -g$
- Find Δt from one component, and use the value for the other component

Relative Motion

• An object's velocity in one frame can be transformed into another frame:

$$\vec{v} = \vec{v}' + \vec{V}$$
 or $\vec{v}' = \vec{v} - \vec{V}$

(Galilean transformation of velocity)

In terms of components:

$$v_x = v'_x + V_x$$
 or $v'_x = v_x - V$
 $v_y = v'_y + V_y$ or $v'_y = v_y - V_y$

Example: A Speeding Bullet

The police are chasing a bank robber. While driving at 50 m/s, they fire a bullet to shoot out a tire of his car. What is the bullet's speed as measured by a TV camera crew parked beside the road?

Let the Earth be frame S, and a frame attached to the police car be S'. S' moves relative to S with $V_x = 50$ m/s.

The gun is in S'. So the bullet travels in S' with $V_X' = 300$ m/s.

The camera crew is in S. The bullet's velocity in S is:

$$v_r = v'_r + V_r = 300 \text{ m/s} + 50 \text{ m/s} = 350 \text{ m/s}$$

Example: Flying to Cleveland I

Cleveland is 300 miles E of Chicago. A plane leaves Chicago flying due E at 500 mph. The pilot forgot to check the weather and doesn't know that the wind is blowing to the S at 50 mph.

- (a) What is the plane's ground speed? (b) Where is the plane 0.60 h later, when the pilot expects to land in Cleveland?
- (a) The plane's velocity relative to the ground is

$$\vec{v} = \vec{v}' + \vec{V} = (500 \,\hat{i} - 50 \,\hat{j}) \,\text{mph}$$

The plane's ground speed is

$$v = \sqrt{v_x^2 + v_y^2} = 502 \text{ mph}$$

(b) After flying 0.6 h, the plane is at (300 mi, -30 mi)

Example: Flying to Cleveland II

A wiser pilot flying from Chicago to Cleveland on the same day plots a course that will take her directly to Cleveland.

- (a) In which direction does she fly the plane? (b) How long does it take to reach Cleveland?
- (a) Plane's velocity in earth's frame:

$$v_x = v'_x + V_x = (500 \text{ mph}) \cos \theta$$
 Chicago

$$v_y = v'_y + V_y = (500 \text{ mph}) \sin \theta - 50 \text{ mph}$$

From
$$v_y = 0$$
, proper heading is $\theta = \sin^{-1} \left(\frac{50 \text{ mph}}{500 \text{ mph}} \right) = 5.74^{\circ}$

 \vec{v}' relative to air

relative to ground

(b) The time it takes: $t = \frac{300 \text{ mi}}{(500 \text{ mi}) \cos 5.74^{\circ}} = 0.604 \text{ h}$

7-Feb-08

Paik

 \vec{V} of air

Circular Motion

• Usually we will measure θ in radians:

$$\theta$$
 (in rad) = s / r

- $2\pi \text{ rad} = 360^{\circ}$
- Angular velocity is defined as the rate of change of θ

$$\omega_{ave} = \frac{\Delta \theta}{\Delta t} \text{ or } \omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Circular Motion, cont

• We will also define an angular acceleration, α

$$\alpha_{ave} = \frac{\Delta \omega}{\Delta t} \text{ or } \alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

- For uniform circular motion (UCM), ω is constant and hence $\alpha = 0$.
 - This does not mean a = 0.

Uniform Circular Motion

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T}$$
 (T: the period)

The speed of a point on the circle is

$$v = \frac{\text{circumference}}{\text{period}} = \frac{2\pi r}{T} = \omega r$$

 The velocity vector is tangential to the circle

Example: Roulette Wheel

A small roulette ball rolls ccw around the inside of a 30-cm diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

- (a) What is the ball's angular velocity?
- (b) What is the ball's position at t = 2.0 s. Assume $\theta_i = 0$.
- (a) Period of the ball's motion is T = 0.60 s. Angular velocity is positive and $\omega = \frac{2\pi \text{ rad}}{0.60 \text{ s}} = 10.47 \text{ rad/s}$
- (b) Ball's position at $\Delta t = 2.0 \text{ s}$ is

$$\theta_f = 0 \text{ rad} + (10.47 \text{ rad/s})(2.0 \text{ s}) = 20.94 \text{ rad} = 3.333 \times 2\pi \text{ rad}$$

We subtract an integer number of 2π rad:

$$\theta_f' = 20.94 \text{ rad} - 3 \times 2\pi \text{ rad} = 2.09 \text{ rad} = 120^{\circ}$$

Uniform Circular Motion, cont

- An acceleration exists since the *direction* of the velocity vector is changing
 - The acceleration is always perpendicular to the path and points to the center
- This acceleration is called the centripetal acceleration
 - The magnitude of the centripetal acceleration is a_C =

The instantaneous velocity \vec{v} is perpendicular to \vec{a} at all points.

Centripetal Acceleration

From geometry,

$$\frac{dv}{v} = \frac{dr}{r}, \ dv = \frac{v}{r}dr$$

$$a_{c} = \frac{dv}{dt} = \frac{v}{r} \frac{dr}{dt} = \frac{v^{2}}{r}$$

The direction is toward the center:

$$\vec{a}_{C} = -\frac{v^{2}}{r}\hat{r}$$

Centripetal Acceleration, cont

$$v_{x} = -v\sin\theta$$

$$v_{\rm v} = v \cos \theta$$

where *v* is a constant.

Using calculus,

$$a_{x} = \frac{dv_{x}}{dt} = -v\cos\theta \frac{d\theta}{dt} = -\frac{v^{2}}{r}\cos\theta,$$

$$a_{y} = \frac{dv_{y}}{dt} = -v\sin\theta \frac{d\theta}{dt} = -\frac{v^{2}}{r}\sin\theta$$

$$\vec{a}_C = -\frac{v^2}{r}\hat{r}$$

Example: Ferris Wheel

A carnival Ferris wheel has a radius of 9.0 m and rotates 4.0 times per minute.

What acceleration do the riders experience?

Period is $T = \frac{1}{4} \text{ min} = 15 \text{ s.}$

A rider's speed is
$$v = \frac{2\pi r}{T} = \frac{2\pi (9.0 \text{ m})}{15 \text{ s}} = 3.77 \text{ m/s}$$

Therefore, the centrifugal acceleration is

$$a_C = \frac{v^2}{r} = \frac{(3.77 \text{ m/s})^2}{9.0 \text{ m}} = 1.6 \text{ m/s}^2$$

- The magnitude of the velocity could also be changing
 - If the speed is changing, this is not a Uniform Circular motion
- In this case, there would be a tangential acceleration as well
 - The magnitude of this acceleration is $a_t = \frac{d|\mathbf{v}|}{dt}$

Total Acceleration

Tangential acceleration:

$$a_t = \frac{d|\mathbf{v}|}{dt}$$

Radial acceleration:

$$a_r = -a_C = -\frac{v^2}{r}$$

The total acceleration:

$$a = \sqrt{a_r^2 + a_t^2}$$

Total Acceleration, cont

 \hat{r} : radially outward

 $\hat{\theta}$: tangent in the direction of increasing θ

$$\mathbf{a} = \mathbf{a}_t + \mathbf{a}_r = \frac{d|\mathbf{v}|}{dt}\hat{\theta} - \frac{v^2}{r}\hat{\mathbf{r}}$$

The sign of a_t must be provided manually

Example: Circular Rocket Motion

A model rocket is attached to the end of a 2.0-m-long rigid rod. The other end of the rod rotates on a frictionless pivot, causing the rocket to move in a horizontal circle. The rocket accelerates at 1.0 m/s² for 10 s, starting from rest, then runs out of fuel.

- (a) What is the magnitude of **a** at t = 2.0 s?
- (b) What is the rocket's angular velocity, in rpm, when it runs out of the fuel?

Circular Rocket Motion, cont

At t = 2.0 s, $v = v_0 + a_t \Delta t = 2.0$ m/s. The rocket then acquires a radial acceleration

$$a_t = \frac{v^2}{r} = \frac{(2.0 \text{ m/s})^2}{2.0 \text{ m}} = 2.0 \text{ m/s}^2,$$

$$a = \sqrt{a_t^2 + a_r^2} = \sqrt{(1.0 \text{ m/s}^2)^2 + (2.0 \text{ m/s}^2)^2} = 2.2 \text{ m/s}^2$$

(b) The tangential velocity after 10 s is $v = v_0 + a_t \Delta t = 10.0$ m/s.

Thus the angular velocity is
$$\omega = \frac{v}{r} = \frac{10.0 \text{ m/s}}{2.0 \text{ m}} = 5.0 \text{ rad/s}$$

Converting to rpm,
$$\omega = \frac{5.0 \text{ rad}}{1 \text{ s}} \times \frac{1 \text{ rev}}{2\pi \text{ rad}} \times \frac{60 \text{ s}}{1 \text{ min}} = 48 \text{ rpm}$$

Linear Versus Angular Motion

	Linear Motion	Angular Motion
Displacement	Δs	$\Delta heta$
Velocity	$v_{avg} = \frac{\Delta s}{\Delta t}, \ v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$	$\omega_{avg} = \frac{\Delta \theta}{\Delta t}, \ \omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$
Acceleration	$a_{avg} = \frac{\Delta v}{\Delta t}, \ a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$	$\alpha_{avg} = \frac{\Delta \omega}{\Delta t}, \ \alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$
Kinematic equations	$v = v_0 + a\Delta t$ $\Delta s = v_0 \Delta t + \frac{1}{2} a(\Delta t)^2$ $v^2 = v_0^2 + 2a\Delta s$	$\omega = \omega_0 + \alpha \Delta t$ $\Delta \theta = \omega_0 \Delta t + \frac{1}{2} \alpha (\Delta t)^2$ $\omega^2 = \omega_0^2 + 2\alpha \Delta \theta$

General Principles

The instantaneous velocity

$$\vec{v} = d\vec{r}/dt$$

is a vector tangent to the trajectory.

The instantaneous acceleration is

$$\vec{a} = d\vec{v}/dt$$

 \vec{a}_{\parallel} , the component of \vec{a} parallel to

 \vec{v} , is responsible for change of *speed*. \vec{a}_{\perp} , the component of \vec{a} perpendicular to \vec{v} , is responsible for change of *direction*.

General Principles

Relative motion

Inertial reference frames move relative to each other with constant velocity V. Measurements of position and velocity measured in frame S are related to measurements in frame S' by the Galilean transformations:

$$x' = x - V_x t$$

$$x' = x - V_x t \qquad v_x' = v_x - V_x$$

$$y' = y - V_y t$$
 $v'_y = v_y - V_y$

$$v_y' = v_y - V_y$$

Important Concepts

Uniform Circular Motion

Angular velocity $\omega = d\theta/dt$. v_t and ω are constant:

$$v_t = \omega r$$

The centripetal acceleration points toward the center of the circle:

$$a = \frac{v^2}{r} = \omega^2 r$$

It changes the particle's direction but not its speed.

Important Concepts

Nonuniform Circular Motion

Angular acceleration $\alpha = d\omega/dt$.

The radial acceleration

$$a_r = \frac{v^2}{r} = \omega^2 r$$

changes the particle's direction. The tangential component

$$a_t = \alpha r$$

changes the particle's speed.

Kinematics in two dimensions

If \vec{a} is constant, then the x- and y-components of motion are independent of each other.

$$x_{f} = x_{i} + v_{ix}\Delta t + \frac{1}{2}a_{x}(\Delta t)^{2}$$

$$y_{f} = y_{i} + v_{iy}\Delta t + \frac{1}{2}a_{y}(\Delta t)^{2}$$

$$v_{fx} = v_{ix} + a_{x}\Delta t$$

$$v_{fy} = v_{iy} + a_{y}\Delta t$$

Projectile motion occurs if the object moves under the influence of only gravity. The motion is a parabola.

- Uniform motion in the horizontal direction with $v_{0x} = v_0 \cos \theta$.
- Free-fall motion in the vertical direction with $a_y = -g$ and $v_{0y} = v_0 \sin \theta$.
- The x and y kinematic equations have the *same* value for Δt .

Circular motion kinematics

Period
$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Angular position $\theta = \frac{s}{r}$

$$\omega_{\rm f} = \omega_{\rm i} + \alpha \Delta t$$

$$\theta_{\rm f} = \theta_{\rm i} + \omega_{\rm i} \Delta t + \frac{1}{2} \alpha (\Delta t)^2$$

$$\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha\Delta\theta$$

Angle, angular velocity, and angular acceleration are related graphically.

- The angular velocity is the slope of the angular position graph.
- The angular acceleration is the slope of the angular velocity graph.

