Physics for Scientists and

!’- Engineers

Chapter 2
Kinematics in One Dimension

Spring, 2008 Ho Jung Paik



| Kinematics

) = Describes motion while ignoring the agents
(forces) that caused the motion

s For now, will consider motion in one
dimension
= Along a straight line

= Will use the particle model

= A particle is a point-like object, has mass but
Infinitesimal size
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| Acceleration and Velocity

i

(a) Speeding to the right

0 x>0 v>0 a>0

X X

(b) Slowing down to the left
C_i '

' & e e e

0 x>0 v<0 a>0
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Motion Diagrams

B
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- Interpreting a Position Graph

‘ (b) 1.Atr= 0 min, the 2. The value of x decreases for
car i1s 10 km to the 30 min, indicating that the car
right of the origin. is moving to the left.
x (km)
M- &

] 5. The car reaches the
10 4% origin at t = 80 min.

¢ (min)

_]U_

_20_

3. The car stops for 10 min at 4. The car starts moving back
a position 20 km to the left to the right at 1 = 40 min.
of the origin.
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Positive & Negative Slopes

|

(a) x(m) (v), = slope = jf = 5.0 m/s

Q -
A

0 1(s)
1 B
=) -
(1:1_'}“ = slope :j_ﬁ = —2.0m/s
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| Uniform & Nonuniform Motion
N

Unifurm motion Nonuniform motion
Tl The displacements between et The displacements between
successive frames are the successive frames are not the
same. Dots are equally same. Dots are not equally
spaced. v_1s constant. spaced. v_is not constant.
x Position graph is a x  Position graph
straight line. The slope 1s curved.
of the lineisv_ .
/ = Ax Ax
F
Lol |
qua Unequal
displacements displacements
s i
I 1 I 1
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| Uniform Motion

) = A motion with V = constant
s Consider 1-D motion in x direction
AX Xy — X
“T At At
X, =X +V,At

V
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Collision Problem

Bob leaves home in Chicago at 9:00 am and travels east at a
steady 60 mph. Susan, 400 miles to the east in Pittsburgh,
leaves at the same time and travels west at a steady 40 mph.
Where will they meet for lunch?

Physical representation

Meet here
; \
. N B B l“!- B
a=10 Pittsburgh

®

4

»

= Y

[
a8

Chicago

Pictorial representation

Bob [~ ¢
o

0
("‘:c:}ﬁ’ {]':.rll‘s‘ ?-;:- {ﬁ-_|)g= (F‘.}g‘ f.

Known
(rly = 0mi v ), =60mph £, =0hr
'f-l;,:ll..; = 400 nu {1‘13\ = —4{ mph

¢ is when {;' j“ = (:1 I.‘:

Find
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Xig = XoB +VB(t1 _to)
=0mi+vg(t, —0h) =vgt;
Xis = Xos +VS(t1 _to)
=400 mi + vgt;

They meet at 7= ¢, and when x5 = x,q. 100~

X = Xis

Vgt, =400 mi + vgt;

(Vgt, —Vvit,) =400 mi
400 mi

t, = ~4.0h
[60 mph — (—40 mph)]

27-Jan-08

Position vs Time and Math

x (mi)
400 - Bob and Susan
meet here -
3004 Susan \ L7
004 000 - Tes
Bob
0 . . — ¢ (h
0 2 4 6

Using this £ in Bob’s equation

Xz = Vigly =60mph x4.0h
Xg =240 mi = X¢

Paik p. 10



. Instantaneous Velocity

‘ = The limit of the average velocity as the time

Interval becomes infinitesimally short.
60 —

Slope of the green line

(b)

= The Instantaneous velocity indicates what Is
happening at every point of time.
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Instantaneous Velocity, cont

——
(a) (b) (c) (d)
Ihe slope between I'he slope between Lhe velocity at X 15 Ihe velocity at X 1s
7 and 315 ¢ and d 15 a better the slope as Ar —» (. the slope of the line
" i H § .
Ipproximation to : tangent to the curve
: the velocity at . , 1 cat X
5 : & gt 5 Y L3 W,
1 ’
- £
oy
o
o |
P
B Ll
; Ly S L ’
F—h | E—

il . B

= The instantaneous speed Is the magnitude of the
Instantaneous velocity

= The average speed Is not always the magnitude of the
average velocity!
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| Position from Velocity

) = Since the instantaneous velocity Is

dx
V, = —
at
the change in position of a moving object is
given by
dx = v, dt

Ltl dx = : v, dt

4
X — X, =] vadt

)

27-Jan-08 Paik p. 13



| Motion Equation from Calculus

i

= Displacement equals .| TN TN
the area under the / N\
velocity—time curve / \

= The limit of the sum
IS a definite integral: W

%

: by
= t Arﬂ
gérgo En v Al J.;,; v_(1)d
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| |nstantaneous Acceleration

) = Instantaneous acceleration is the limit of the
average acceleration as At approaches O:

a = Av, dv,
X A'!TO At dt
. dx d®x
Since v, =—, a, =—
dt dt
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| Instantaneous Acceleration, cont

, = The slope of the " Ay

velocity vs time graph : q, =—2%
IS the acceleration

= The blue line is the Vs
average acceleration
between £;and £

Xt
= The green line
represents the
Instantaneous
acceleration at £
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. Acceleration and Velocity, 1

-——— -——— — -— . -——

— —— e e ——

Equal time delay snapshots

= The car is moving with constant positive velocity (red
arrows maintaining the same size)

= Acceleration equals zero
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. Acceleration and Velocity, 2

-
R —— — —_— —_—

Equal time delay snapshots

= Velocity and acceleration are in the same direction

= Acceleration is positive and uniform (blue arrows
maintaining the same length)

= Velocity is positive and increasing (red arrows getting
longer)
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| Acceleration and Velocity, 3

]

A f— f— e il A

Equal time delay snapshots

= Acceleration and velocity are in opposite directions

= Acceleration is negative and uniform (blue arrows
maintaining the same length)

= Velocity is positive and decreasing (red arrows getting
shorter)
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| Constant Acceleration

) = For constant acceleration, the average
velocity can be expressed as the arithmetic
mean of the initial and final velocities

_Vy+V

Vave 2

= Not true If ais not constant
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| Velocity from Acceleration

) s Since the instantaneous acceleration Is

the change in velocity Is given by

t t
dv =v-v, = | adt
b b

t
= If ais a constant, _‘;adt =a(t—t,)

v=v,+a(t—-t,)| Ea @
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. Displacement from Acceleration

‘ s For constant acceleration,
X=X, +V,.(t—1,)

= Since V_,, = %(VO —I—V) and v=Vv,+a(t—-t,)

Vae = 5 Vo +Vp +a(E—t,)|= v, +2a(t — t,)

ave

s [ herefore,

X=X +Vo(t—t;)+-alt—t,)°
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| With Time Eliminated

) = From Eq. (1), t—t _ V=V,
g =
a
= Substituting this into Eq. (2),

2
V—V V—V
x—xO:vO( °j+;a( Oj
a a

1
=— (2vov —2V2 + V2 —2V,V + vg)
2a
= Therefore,

V2 =V, +2a(X—X,)| Ea. (3
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- 1-D Kinematic Equations

) s With constant acceleration,
(1) v=v,+a(t—t,)

(2) X=X +Vo(t_to)+;a(t_to)2
(3) V° =V, +2a(X—X,)

= You may need to use two of the equations to
solve one problem

= Many times there is more than one way to
solve a problem
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. Displacement-Time Curve

‘ = Slope of the

curve Is the X
velocity

Slope = v,
s Curved line
Indicates the
velocity Is
changing
= Therefore,

there is an 0
acceleration

Slope = v, ;

~NF——— — — —
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| Velocity—Time Curve

‘ = Slope Is the

acceleration Uy

= Straight line
Indicates the
velocity Is
changing ata o .
constant rate

= Therefore, a
constant 0
acceleration
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| Acceleration—Time Curve

‘ = Slope is the

rate of Qy
change in
acceleration

= Zero slope 4

Indicates a
constant
acceleration
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| Example of a =0

-

A car is moving at a constant velocity of 60 mph. The driver
suddenly sees an animal crossing the road ahead. If the
driver’s reaction time is 0.20 s, show how far the car will go
before the driver pushes on the brake pedal.

= We know
\, = 60 mph x (0.447 m/s / 1 mph) = 27 m/s,
a=0m/s?, t-t=1,,=0.20s

= Use the equation:

X=X, +Vo(t—to) +alt —ty)

= The displacement of the car before putting on the brakes:
X—X = 2/m/sx020s+0m=54m
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‘ Example Of a i O a,(m/s?)

A particle starts from rest and

accelerates as shown in the figure.
Determine (a) the particle’s speed at T w0 & om
t=10.0 s and 20.0 s, and (b) the AT
distance traveled in the first 20.0 s.

(@)v, =Vv,+aAt =0+2.00x10.0=20.0 m/s
V=V, +a,At, = 20.0+0x5.0 = 20.0 m/s
V,, =V, + a,At, = 20.0+ (—3.00) x5.0 = 5.0 m/s

(b) X, = X, +V,At, +2a (At ) =0+0x10.0+£x2.00x10.0° =100 m
X = X, +V,At, +La,(At, ) =100+ 20.0x5.0+ 2 x0x5.0° =200 m

X,p = X5 + VigAl, + 5+ &, (At, ) =200+ 20.0x5.0+ ; (—3.00) x5.0° = 263 m
27-Jan-08 Paik
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. Freely Falling Objects

‘ = A freely falling object Is any object moving
freely under the influence of gravity alone,
l.e., with negligible air drag

= Object has a constant acceleration due to
gravity

s Demonstration 1: Free fall iIn vacuum

= Demonstration 2: Measure a
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| Acceleration of Free Fall

]

= Acceleration of an object In
free fall is downward,
regardless of the initial motion

= The magnitude of free fall
acceleration is usually taken as
g = 9.80 m/s?, however
= g decreases with altitude
= g varies with latitude

= 9.80 m/s? is the average at the
Earth’s surface
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. Free Fall Example

£y =1
T.If- [ 9]

E ] i P
e = 200 mss
i =980 m/ s

At A, initial velocity is upward (+20 m/s)
and acceleration is —g (—9.8 m/s?).

At B, velocity is O and acceleration is —g.

At C, velocity has the same magnitude
as at A, but is in the opposite direction.

The final displacement is =50.0 m.
(a) Find the distance from A to B.

(b) Find the velocity at C.

(c) Find the velocity at - = -50.0 m.

27-Jan-08

Paik




Free Fall Example, cont

- — _ LD =408
P = LI 1 . B, m £

n
(a) Vé = Vi + 2a( yB - yA) oy = TH E N g S 'm ’r ¥ = =01 e

i " PR R m,;'n'b

0 = (20.0 m/s)? + 2(~9.80 m/s?)(y, —0m) -l
2 2 ;;53???
~ (200mf/s)©  400(m/s) 204 =l

Ve = 2(9.80mis?) ~ 18.60 mis’ =l 1

(b) Ve = Vg +2a(Ye ~ Ye)
=0+ 2(-9.80 m/s*)(0m —20.4m) =399.8(m/s)* | _ " | le ,-sm.

T = =2a.F 111

-
-
I|a

i
9
[

= _LTEETT)

V. = +20.0 m/s (choose minussign, as down) o | e
(C) Ve = Vo +2a(Ye — Yc) L
V2 = (—=20.0 m/s)? + 2(—9.80 m/s?)(-50.0m — 0 m) =
= 400(m/s)? + 980(m/s)® = 1380(m/s)? "'-'ﬂ:.n
Ve =+37.1m/s (choose the minussign) ;

i
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o e T Fe
'@ g = =471 mis



. Problem Solving — Conceptualize

) = hink about and understand the situation
= Make a quick drawing of the situation

s Gather the numerical information
= Write down the “givens”

= Focus on the expected result
= What are you asked to find?

= Think about what a reasonable answer should
be, e.qg., sign of quantities, units
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. Problem Solving — Categorize

‘ = Simplify the problem
= Can you ignore air resistance?
= Model objects as particles

= Try to identify similar problems you have
already solved
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. Problem Solving — Analyze

‘ = Select the relevant equation(s) to apply

s Solve for the unknown variable

= Substitute appropriate numbers

s Calculate the results
= Include units

= Round the result to the appropriate number of
significant figures
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. Problem Solving — Finalize

) = Check your result

= Does It have the correct units?

= Does it agree with your conceptualized ideas?
Does the answer have the correct signs?

= Look at limiting situations to be sure the
results are reasonable

= e.g., the correct limit if g = 07?

= Compare the result with those of similar
problems
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. Example 1

|

A hare and a tortoise compete In
a 1.00 km race. The tortoise
crawls steadily at its maximum
speed of 0.200 m/s toward the
finish line. The hare runs at its
maximum speed of 8.00 m/s
toward the goal for 0.800 km and
then stops to tease the tortoise.

How close to the goal can the
hare let the tortoise approach
before resuming the race?
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. Example 1, cont
I

The hare sits at 800 m waliting for
the tortoise. To go the last 200 m,
the hare will take

At= 200 m/(8.00 m/s) = 25.0 s

In 25.0 s, the tortoise can go
Ax=0.200 m/s x 25.0 s = 5.00 m

In order for the hare to win, he
must restart before the tortoise gets
within 5.00 m of the finish line.
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. Example 2

N

Jules Verne in 1865 suggested sending people to the Moon by
firing a space capsule from a 220-m long cannon with a final
velocity of 10.97 km/s.

What would have been the acceleration experienced by the
space travelers during launch? Compare your answer with
the free-fall acceleration 9.80 m/s?.

v =0m/s,v, =1097 x10° m/s,y, =0m, y, =220 m

2 2 Y
Vi =V +2a(y; - V) 220m|_

(10.97 x10°m/s)? = (0 m/s)? + 2a(220 m)

o _ 120.3x 10°(m/s)*
440 m

= 2.735x10° m/s? = 2.79x10%g
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| Example 3

|

Speedy Sue, driving at 30.0 m/s,
enters a one-lane tunnel. She
then observes a slow-moving van
155 m ahead traveling at

5.00 m/s. Sue applies her brakes
but can accelerate only at —2.00
m/s? because the road is wet.

Will there be a collision? If yes,
determine how far into the tunnel
and at what time the collision
ocCcurs.

27-Jan-08 Paik
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Example 3, cont

Sue's position :

Xs(t) = Xos + Vost + 5 agt® =0m + (30.0 m/s)t + . (-2.00 m/s*)t?
Van's position :

X, (1) = Xo + Vout + 5 a,t* =155 m + (5.00 m/s)t + - (0 m/s*)t’
Collision occurs If there isa solution t. to Xs(t.) =%, (t.):

30.0t, —tZ =155+5.00t. or tZ —25.0t,. +155=0

~ 25.0++/25.02 = 4x155

2
The smaller one is the collision time. The wreck happens at position :

X, (tc) =155m +5.00m/sx11.4s =212 m

te =13.6s or 11.4s
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. Example 4

-
A student climbs a 50.0-m cliff that
overhangs a calm pool of water. He

throws two stones vertically downward, >°°™

1.00 s apart, and observes that they
cause a single splash. The first stone
has an initial speed of 2.00 m/s.

(a) How long after release of the first
stone do the two stones hit the water?

(b) What initial velocity must the
second stone have?

(c) What is the speed of each stone at
the instant the two hit the water?

27-Jan-08 Paik
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Example 4, cont

() Firststone: y, = y,, + Vv, (t—t,,) +2a(t—t,)*
0m =50.0m + (-2.00 m/s)(t —0s) +1 (9.8 m/s*)(t — 0s)°
. —200 \/2.00% — 4(4.90)(~50.0)
2(4.90)
(b) The second stone : Y, = Y, + Voo (t —t,,) + 2a(t —t,,)°
~50.0m=0m+V,,(3.00s-1.00s) + 1 (-9.80 m/s*)(3.00s —1.00)*

 —50.0+19.6

V.. =
20 2.00
(C) V) =V + a(t - th)

= —2.00m/s + (-9.80 m/s*)(3.00s — 0s) = —-31.4 m/s
V, = Vy +a(t —1ty)
= -15.3m/s + (-9.80 m/s*)(3.00s —1.00s) = —34.9 m/s

=3.00s or—-3.40s (Choose +)

=-15.2m/s
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| Example 5

=3
The Acela is the Porsche of American trains. It can carry 304

passengers at 170 mi/h. A velocity-time graph for the Acela is
shown in the figure.

(a) Find the peak positive acceleration of the train.
(b) Find the train’s displacement between = 0 and = 200 s.

‘_’H[I[-

150

| / \
100 /

f %
M | 4‘, \
J”‘.":'_‘_—‘““ — \
0 I | | | | | | M‘-_m& | ((s)

50 0 50 100 150 200 250 300 350N\400
_50 |- o

100 —
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| Example 5, cont
m

(a) Peak acceleration is
given by the slope of
the steepest tangent to
the v-tcurve.

From the tangent line t(s)

shown, we find

AV (155 - 45) mi/h

a=-—= = 2.2 (mi/h)s
At~ (100-50)s
22x20M 16 98 mss?
3600s s
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| Example 5, cont
-1
(b) Area under the v-fcurve
equals the displacement.

We approximate the area
with a series of triangles and
rectangles.

1

0

t(s)

100 ' 200 @ 300 | 440

AX=areal+area2+area3+aread+areab
=50mi/hx50s+50mi/hx50s+160 mi/h x100s

N

24000 mi

24000 mi/h xs =

3600
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