
Spring, 2008 Ho Jung Paik

Physics for Scientists and 
Engineers

Chapter 2
Kinematics in One Dimension
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Kinematics
Describes motion while ignoring the agents 
(forces) that caused the motion

For now, will consider motion in one 
dimension

Along a straight line

Will use the particle model
A particle is a point-like object, has mass but 
infinitesimal size
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Acceleration and Velocity
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Motion Diagrams

Position 
graphs ⇒
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Interpreting a Position Graph



27-Jan-08 Paik p. 6

Positive & Negative Slopes
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Uniform & Nonuniform Motion
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Uniform Motion
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Collision Problem
Bob leaves home in Chicago at 9:00 am and travels east at a 
steady 60 mph.  Susan, 400 miles to the east in Pittsburgh, 
leaves at the same time and travels west at a steady 40 mph.  
Where will they meet for lunch?
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Position vs Time and Math
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They meet at t = t1 and when x1B = x1S.

Using this t1 in Bob’s equation
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Instantaneous Velocity
The limit of the average velocity as the time 
interval becomes infinitesimally short.

The instantaneous velocity indicates what is 
happening at every point of time.
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Instantaneous Velocity, cont

The instantaneous speed is the magnitude of the 
instantaneous velocity

The average speed is not always the magnitude of the 
average velocity!
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Position from Velocity
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Since the instantaneous velocity is

the change in position of a moving object is 
given by 
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Motion Equation from Calculus

Displacement equals 
the area under the 
velocity–time curve

The limit of the sum 
is a definite integral:
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Instantaneous Acceleration
Instantaneous acceleration is the limit of the 
average acceleration as Δt approaches 0:
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Instantaneous Acceleration, cont
The slope of the 
velocity vs time graph 
is the acceleration

The blue line is the 
average acceleration 
between ti and tf
The green line
represents the 
instantaneous 
acceleration at tf
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Acceleration and Velocity, 1

The car is moving with constant positive velocity (red 
arrows maintaining the same size)

Acceleration equals zero

Equal time delay snapshots
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Acceleration and Velocity, 2

Velocity and acceleration are in the same direction

Acceleration is positive and uniform (blue arrows 
maintaining the same length) 

Velocity is positive and increasing (red arrows getting 
longer)

Equal time delay snapshots
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Acceleration and Velocity, 3

Acceleration and velocity are in opposite directions

Acceleration is negative and uniform (blue arrows 
maintaining the same length)

Velocity is positive and decreasing (red arrows getting 
shorter)

Equal time delay snapshots
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Constant Acceleration
For constant acceleration, the average 
velocity can be expressed as the arithmetic 
mean of the initial and final velocities

Not true if a is not constant
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Velocity from Acceleration
Since the instantaneous acceleration is

the change in velocity is given by

If a is a constant,
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Displacement from Acceleration
For constant acceleration,

Since and 

Therefore,
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With Time Eliminated
From Eq. (1),

Substituting this into Eq. (2),

Therefore,
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1-D Kinematic Equations
With constant acceleration,

You may need to use two of the equations to 
solve one problem

Many times there is more than one way to 
solve a problem
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Displacement–Time Curve
Slope of the 
curve is the 
velocity

Curved line
indicates the 
velocity is 
changing

Therefore, 
there is an 
acceleration
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Velocity–Time Curve
Slope is the 
acceleration

Straight line
indicates the 
velocity is 
changing at a 
constant rate

Therefore, a 
constant 
acceleration



27-Jan-08 Paik p. 27

Slope is the 
rate of 
change in 
acceleration

Zero slope
indicates a 
constant 
acceleration

Acceleration–Time Curve
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Example of a =0
A car is moving at a constant velocity of 60 mph.  The driver 
suddenly sees an animal crossing the road ahead.  If the 
driver’s reaction time is 0.20 s, show how far the car will go 
before the driver pushes on the brake pedal. 
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We know
v0 = 60 mph x (0.447 m/s / 1 mph) = 27 m/s, 
a = 0 m/s2, t – t0 = treact = 0.20 s

Use the equation:

The displacement of the car before putting on the brakes:
x – x0 =  27 m/s x 0.20 s + 0 m = 5.4 m
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A particle starts from rest and 
accelerates as shown in the figure.  
Determine (a) the particle’s speed at 
t = 10.0 s and 20.0 s, and (b) the 
distance traveled in the first 20.0 s.

Example of a ≠ 0
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Freely Falling Objects
A freely falling object is any object moving 
freely under the influence of gravity alone, 
i.e., with negligible air drag

Object has a constant acceleration due to 
gravity

Demonstration 1: Free fall in vacuum

Demonstration 2: Measure a
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Acceleration of Free Fall
Acceleration of an object in 
free fall is downward, 
regardless of the initial motion

The magnitude of free fall 
acceleration is usually taken as 
g = 9.80 m/s2, however 

g decreases with altitude
g varies with latitude
9.80 m/s2 is the average at the 
Earth’s surface



27-Jan-08 Paik p. 32

Free Fall Example 

At A, initial velocity is upward (+20 m/s) 
and acceleration is –g (–9.8 m/s2).  
At B, velocity is 0 and acceleration is –g.  
At C, velocity has the same magnitude 
as at A, but is in the opposite direction.  
The final displacement is –50.0 m. 
(a) Find the distance from A to B.
(b) Find the velocity at C. 
(c) Find the velocity at yE = –50.0 m. 



27-Jan-08 Paik p. 33

Free Fall Example, cont
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Problem Solving – Conceptualize 
Think about and understand the situation

Make a quick drawing of the situation

Gather the numerical information
Write down the “givens”

Focus on the expected result
What are you asked to find?

Think about what a reasonable answer should 
be, e.g., sign of quantities, units
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Problem Solving – Categorize 
Simplify the problem

Can you ignore air resistance? 
Model objects as particles 

Try to identify similar problems you have 
already solved
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Problem Solving – Analyze 
Select the relevant equation(s) to apply

Solve for the unknown variable

Substitute appropriate numbers

Calculate the results
Include units

Round the result to the appropriate number of 
significant figures
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Problem Solving – Finalize
Check your result

Does it have the correct units?
Does it agree with your conceptualized ideas? 
Does the answer have the correct signs?

Look at limiting situations to be sure the 
results are reasonable

e.g., the correct limit if a = 0?

Compare the result with those of similar 
problems
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Example 1

A hare and a tortoise compete in 
a 1.00 km race. The tortoise 
crawls steadily at its maximum 
speed of 0.200 m/s toward the 
finish line.  The hare runs at its 
maximum speed of 8.00 m/s 
toward the goal for 0.800 km and 
then stops to tease the tortoise.  
How close to the goal can the 
hare let the tortoise approach 
before resuming the race?  
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Example 1, cont

The hare sits at 800 m waiting for 
the tortoise.  To go the last 200 m, 
the hare will take
Δt = 200 m/(8.00 m/s) = 25.0 s

In 25.0 s, the tortoise can go
Δx = 0.200 m/s x 25.0 s = 5.00 m

In order for the hare to win, he 
must restart before the tortoise gets 
within 5.00 m of the finish line. 
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Example 2
Jules Verne in 1865 suggested sending people to the Moon by 
firing a space capsule from a 220-m long cannon with a final 
velocity of 10.97 km/s.  
What would have been the acceleration experienced by the 
space travelers during launch?  Compare your answer with 
the free-fall acceleration 9.80 m/s2.
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Example 3

Speedy Sue, driving at 30.0 m/s, 
enters a one-lane tunnel.  She 
then observes a slow-moving van 
155 m ahead traveling at 
5.00 m/s.  Sue applies her brakes 
but can accelerate only at −2.00 
m/s2 because the road is wet.   
Will there be a collision?  If yes, 
determine how far into the tunnel 
and at what time the collision 
occurs. 
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Example 3, cont
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Example 4
A student climbs a 50.0-m cliff that 
overhangs a calm pool of water.  He 
throws two stones vertically downward, 
1.00 s apart, and observes that they 
cause a single splash. The first stone 
has an initial speed of 2.00 m/s. 
(a) How long after release of the first 
stone do the two stones hit the water? 
(b) What initial velocity must the 
second stone have? 
(c) What is the speed of each stone at 
the instant the two hit the water?
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Example 4, cont

m/s 9.34)s 00.1s 00.3)(m/s 80.9(m/s 3.15          

)(v     
m/s 4.31)s 0s 00.3)(m/s 80.9(m/s 00.2         

)( (c)

m/s 2.15
00.2

6.190.50     

)s 00.1s 00.3)(m/s 80.9()s 00.1s 00.3(m 0m 0.50     

)()(  :stone second The (b)

 ) (Choose  s 40.3or   s 00.3
)90.4(2

)0.50)(90.4(400.200.2
     

)s 0)(m/s 8.9()s 0)(m/s 00.2(m 0.50m 0     

)()(  :stone First (a)

2
20202

2
10101

20

22
2
1

20

2
202

1
2020202

2

22
2
1

2
012

1
0101011

−=−−+−=

−+=
−=−−+−=

−+=

−=
+−

=

−−+−+=−

−+−+=

+−=
−−±−

=

−−+−−+=

−+−+=

ttav

ttavv

v

v
ttattvyy

t

tt
ttattvyy



27-Jan-08 Paik p. 45

Example 5
The Acela is the Porsche of American trains.  It can carry 304 
passengers at 170 mi/h.  A velocity-time graph for the Acela is 
shown in the figure.
(a) Find the peak positive acceleration of the train.  
(b) Find the train’s displacement between t = 0 and t = 200 s.  
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Example 5, cont
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(a) Peak acceleration is 
given by the slope of 
the steepest tangent to 
the v -t curve.  

From the tangent line 
shown, we find
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(b) Area under the v -t curve 
equals the displacement.  

We approximate the area 
with a series of triangles and 
rectangles.

Example 5, cont
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