

Chapter 1 Concepts of Motion

Physics

- Fundamental science
 - concerned with the basic principles of the Universe
 - foundation of other physical sciences
- Divided into six major areas
 - Classical Mechanics
 - Thermodynamics
 - Electromagnetism
 - Optics
 - Relativity
 - Quantum Mechanics

Classical Physics

- Mechanics and Electromagnetism are basic to all other branches of classical physics
- Classical physics were developed before 1900
 - Our study will start with Classical Mechanics.
 - Also called Newtonian Mechanics

Classical Physics, cont

- Includes Mechanics
 - Major developments by Newton, and continuing through the latter part of the 19th century
- Thermodynamics
- Optics
- Electromagnetism
 - All of these were not developed until the latter part of the 19th century

- Began near the end of the 19th century
- Phenomena that could not be explained by classical physics
- Includes
 - Theories of Relativity
 - Quantum Mechanics

- Still important in many disciplines
- Wide range of phenomena can be explained with classical mechanics
- Many basic principles carry over into other phenomena
 - Conservation Laws apply directly to other areas

Objective of Physics

- To find the fundamental laws that govern natural phenomena
- To express the laws in the language of mathematics
- To use these laws to develop theories that can predict the results of future experiments

Theory and Experiments

- Should complement each other
- When a discrepancy occurs, theory may be modified
 - Theory may apply to limited conditions
 - e.g. Newtonian Mechanics confined to objects
 - 1) traveling slowly with respect to the speed of light
 - 2) larger than atoms
 - Try to develop a more general theory

Model Building

- A model is often a simplified system of physical components
 - Identify the components
- Make predictions about the behavior of the system
 - The predictions will be based on interactions among the components and/or
 - Based on the interactions between the components and the environment

Models of Matter

- Atoms has a central nucleus surrounded by electrons
- Nucleus contains protons and neutrons
 - Protons and neutrons are made up of *quarks*

"Particle" Model

- The fundamental constituents of matter are considered to be particles that have zero size
 - e.g. electrons, quarks, photon, etc.
- An extended object can be modeled as a mass at a single point in space and time
 - when its internal motions can be ignored
- More complex objects can often be modeled as a collection of particles

Quantities Used

- In Mechanics, three basic quantities are used
 - Length
 - Mass
 - Time
- Will also use derived quantities
 - These are other quantities that can be expressed in terms of basic quantities

Systems of Measurements

- US System of measurement
 - Length in feet (ft)
 - Time in seconds (s)
 - Mass in slugs
 - Commonly, in pounds (lb)
- SI Systéme Internationale
 - Agreed to in 1960 by an international committee
 - Main system used in this text

Length

- SI Unit: meter, m
 - 1 in = 2.54 cm \Rightarrow 1 m \approx 3.28 ft
- Previously defined in terms of a standard meter bar
- Now defined by the distance traveled by *light* in a vacuum during a given period of time

Mass

- SI Unit: kilogram, kg
 - 1 lb = 0.45359237 kg \Rightarrow 1 kg \approx 2.20 lb
- Based on a *metal cylinder* kept at the
 International Bureau of
 Standards, Paris

- SI Unit: second, s
- Previously defined based on a mean solar day
- Now defined in terms of the oscillation of radiation from a cesium atom

Prefixes

- Prefixes correspond to powers of 10
- They are multipliers of the base unit
- Examples:
 - $-2 \text{ mm} = 2 \times 10^{-3} \text{ m}$
 - \bullet 3 g = 3 x 10⁻³ kg

Table 1.4

Prefixes for Powers of Ten		
Power	Prefix	Abbreviation
10^{-24}	yocto	у
10^{-21}	zepto	Z
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	С
10^{-1}	deci	d
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zetta	Z
10^{24}	yotta	Y

- Combinations of the fundamental quantities of length, mass and time
- Example: Density
 - It is defined as mass per unit volume

$$\rho \equiv \frac{m}{V}$$

Units are kg/m³

Densities

Substance	Density $ ho (10^3 \mathrm{kg/m^3})$
Platinum	21.45
Gold	19.3
Uranium	18.7
Lead	11.3
Copper	8.92
Iron	7.86
Aluminum	2.70
Magnesium	1.75
Water	1.00
Air at atmospheric pressure	0.0012

Average Density of Earth?

$$V_E = \frac{4}{3}\pi (6.37 \times 10^6)^3 = 1.08 \times 10^{21} \text{ m}^3$$

• Earth's mass is $M_E = 5.98 \times 10^{24} \text{ kg}$, therefore

$$\rho_E = \frac{M_E}{V_E} = \frac{5.98 \times 10^{24} \text{ kg}}{1.08 \times 10^{21} \text{ m}^3} = 5.54 \times 10^3 \text{ kg/m}^3$$

- The density of granite is 2.75 x 10³ kg/m³
- What does this tell us about the interior of Earth?

Atomic Mass

- The atomic mass is the total number of protons and neutrons in the element
- Often measured in atomic mass units, u (or amu), the mass of a proton
 - $\mathbf{u} = 1.6605387 \times 10^{-27} \text{ kg}$
 - Note electron masses are negligible compared with 1 amu

Dimensions

- By dimensions, we mean how a quantity depends on L,M & T
 - denotes the physical nature of a quantity, not its size
- Dimensions are denoted with square brackets
 - Length [L]
 - Mass [M]
 - Time [T]

Symbols

- The symbol used for a quantity is not necessarily the symbol used for its dimension
- Some quantities have one symbol used consistently
 - e.g. time is t virtually everywhere
- Some quantities have many symbols used, depending upon the situation
 - e.g. lengths may be x, y, z, r, etc.

Dimensional Analysis

- Technique to check the correctness of an equation or to assist in deriving an equation
- Dimensions (length, mass, time) can be treated as algebraic quantities
 - add, subtract, multiply, divide
- Both sides of equation must have the same dimensions!

Dimensional Analysis, cont

- Given the equation: x = 1/2 at 2
- Check dimensions on each side to see if it might be correct:

$$L = \frac{L}{T^2} \cdot T^2 = L$$

- The equation is dimensionally correct
 - There are no dimensions for the constant 1/2

Conversion of Units

- When units are not consistent, you may need to convert to appropriate ones
 - e.g. ft to m
- Units can be treated like algebraic quantities that can multiply or cancel each other out
- See the *inside of the front cover* for an extensive list of conversion factors

Conversion of Units, cont

- Multiply original value by a ratio equal to one,
 e.g., 12 in/1 ft = 1
- Example, 15.0 in = ? cm

1 in = 2.54 cm,
$$15.0 \text{ in} \times \frac{2.54 \text{ cm}}{1 \text{ in}} = 38.1 \text{ cm}$$

 Always include units for every quantity in your answer

Reasonableness of Results

- When solving a problem, check your answer to see if it seems reasonable
 - e.g. a car going at 10⁶ m/s is not reasonable
- Make an order of magnitude "guess" to estimate what the answer should be
- Order of magnitude is the closest power of 10
 - Order of magnitude of $20 \Rightarrow 10$
 - Order of magnitude of $700 \Rightarrow 10^3$

How Many Ping Pong Balls?

$$\Rightarrow V_{\text{ball}} \approx (.1 \text{ ft})^3 = 10^{-3} \text{ ft}^3$$

The ballpark estimate for the number N of balls that could fit in a room is:

$$N V_{\text{ball}} \approx V_{\text{room}} \Rightarrow N \approx 10^6$$

Significant Figures

- A significant figure is one that is reliably known
- Zeros may or may not be significant
 - Those used to position the decimal point are not significant
 - To remove ambiguity, use scientific notation
- In a measurement, the significant figures include the first estimated digit

Significant Figures, examples

- 0.0075 m has 2 significant figures
 - The leading zeros are placeholders only
 - Scientific notation: 7.5 x 10⁻³ m
- 10.0 m has 3 significant figures
 - The decimal point gives information about the reliability of the measurement
- 1500 m is ambiguous
 - Use 1.5 x 10³ m for 2 significant figures
 - Use 1.50 x 10³ m for 3 significant figures

Significant Figures, operations

Multiplying or dividing:

The number of significant figures is the same as the lowest number of *significant figures* in any factor

- e.g. $25.57 \text{ m} \times 2.45 \text{ m} = 62.6 \text{ m}^2$
- Adding or subtracting:

The number of decimal places is equal to the smallest number of *decimal places* in any term

 \bullet e.g. 135 cm + 3.25 cm = 138 cm

Rounding Off Numbers

- Last retained digit is increased by 1, if the last digit dropped is ≥ 5
 - e.g. 1.36 ⇒ 1.4
- Last retained digit remains as it is, if the last digit dropped is < 5
 - e.g. $1.34 \Rightarrow 1.3$
- Saving rounding until the final result will help eliminate accumulation of errors

Measurement Uncertainty

- When measurements are made, there is always an uncertainty
- Example: a rectangular plate is measured to have dimensions
 - L = $5.5 \pm .1 \text{ m}$, W = $6.4 \pm .1 \text{ m}$
- This can be expressed as percentages
 - $L = 5.5 \text{ m} \pm 1.8\%, W = 6.4 \text{ m} \pm 1.6\%$

Propagation of Uncertainty

Multiplying or dividing:

The percentage uncertainties are added

• L x W =
$$(5.5 \text{ m} \pm 1.8\%)(6.4 \text{ m} \pm 1.6\%)$$

= $35 \text{ m}^2 \pm 3.4\%$

Adding or subtracting:

The absolute uncertainties are added

• W - L =
$$(6.4 \text{ m} \pm 0.1 \text{ m})$$
 - $(5.5 \text{ m} \pm 0.1 \text{ m})$
= $0.9 \text{ m} \pm 0.2 \text{ m}$

Kinematics

- Describes motion while ignoring the agents (forces) that caused the motion
- For now, will consider motion in one dimension
 - Along a straight line
- Will use the particle model
 - Infinitesimal size, but has a finite mass

Position

- Defined in terms of a frame of reference (coordinate system)
- The object's position is its location with respect to the frame of reference

$$A = 28 \text{ m}, B = 50 \text{ m}$$

 $C = 36 \text{ m}, D = 0 \text{ m}, E = -40 \text{ m}, F = -55 \text{ m}$

Position-Time Graph

- Shows the motion of the particle (car)
- The smooth curve is a guess as to what happened between the data points

p. 38

24-Jan-08 Paik

1-D Displacement

- Defined as the change in position during some time interval
- Represented as Δx_i : $\Delta x = x_f x_i$
 - SI units are meters (m)
 - Δx can be positive or negative
- Is independent of the frame of reference

2-D Displacement

Example: A particle travels from A to B along the path shown

- The distance traveled is the total length of the curve and is a scalar
- The displacement is the solid line from A to B and is a vector
 - Independent of the path taken between the two points

Scalars and Vectors

- Scalar quantities are completely described by magnitude only
 - e.g. distance, speed, mass, temperature
- Vectors quantities need both magnitude (numerical value) and direction to completely describe them
 - e.g. displacement, velocity, acceleration, force

Adding Vectors

Subtracting Vectors

2-D Displacement, cont

Speed and Velocity

 Speed is the distance traveled (scalar) divided by the time interval spent

•
$$v_{avg} = \frac{\Delta \ell}{\Delta t}$$
, has no direction

 Velocity is the displacement (vector) divided by the time interval spent

$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t}$$
, has a direction

Velocity Vectors

The length of each arrow represents the average speed. The hare moves faster than the tortoise.

Relating Position to Velocity

Origin

The displacement $\Delta \vec{r}$ points in the same direction as the velocity \vec{v} .

> Finding the ball's final position depends on knowing the velocity \vec{v} .

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$$

$$\vec{r}_2 = \vec{r}_1 + \vec{v} \Delta t$$

Acceleration

- Acceleration is the velocity change (vector) divided by the time interval spent
 - $\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$, has a direction
- Acceleration occurs when
 - the magnitude of velocity (speed) changes,
 - the direction of the velocity changes, or
 - both the speed and direction change

Acceleration in Circular Motion

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i$$

$$\vec{v}_f = \vec{v}_i + \vec{a} \Delta t$$

- Uniform circular motion
 - Only the *direction* of velocity changes
 - ⇒ Centripetal acceleration

Acceleration due to Gravity

Projectile motion

 Both the direction and magnitude of velocity changes

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i$$

$$\vec{v}_f = \vec{v}_i + \vec{a} \Delta t$$