NAME:	Qui	z #9:
(0 4)	Phy	s142
Solution		

A current of 0.5 A charges a parallel plate capacitor whose plates are circular with a radius of a=10.0 cm and whose plate separation is 1.0 mm. Recall that the capacitance of a parallel plate capacitor is $C = \frac{\varepsilon_0 A}{I}$, and capacitance is generally defined as $C = \frac{Q}{\Lambda r}$. The diagram is shown below where the wires connected to the capacitor are

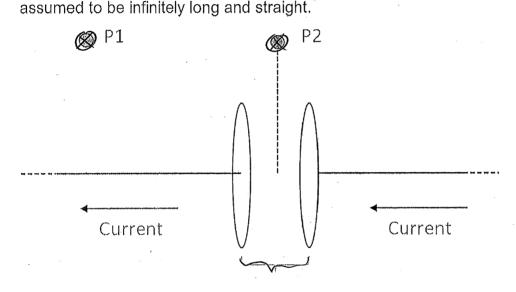


Plate separation

(a) [5 pts] What is the rate of change of the electric field as a function of time between the plates?

Gauss's law: $\Phi_{\varepsilon} = EA = \frac{9em}{E_0}$; if A is entire area of plates, then $q_{enc} = q$; $\Rightarrow \frac{d\Phi}{dt} = \frac{1}{e_0} \frac{dq}{dt}$; A is const., change in change with time is clarent; $\Rightarrow A \frac{dE}{dT} = \frac{I}{\epsilon_o}$ $\Rightarrow \frac{dE}{dt} = \frac{I}{A\epsilon_o} = \frac{0.5A}{(\pi (0.10 \text{ m})^2)(8.85 \times 10^{12})} = 1.80 \times 10^{12} \text{ A/s}$ (b) [3 pts] What is the direction of the B-field at point P1 and P2? Draw your answer on

the diagram. on picture

(c) [2 pts] Is the B-field at point P2 changing in time? Explain.

No B is constant, because B is proportional to displacement current (ϵ . d^{\pm}), which is dependent on the current in the wire, I, which is constant.