Physics 165: Intro to Programming for the Physical Sciences, Spring 2013

MWF 10:00 – 10:50 am, PLS 1129

INSTRUCTOR: Professor Michelle Girvan

 Email: girvan@umd.edu (Please include ‘phys165’ in the subject of all emails)
 Phone: x5-1610
 Office Hours: Mon 1:30 – 2:30 pm, or by appointment, A.V. Williams 3327
 Course website: Our course website is accessible through http://www.elms.umd.edu

COURSE DESCRIPTION:

 Introduction to programming using examples in the physical sciences.

COURSE SOFTWARE:

 MATLAB: We will be using Matlab for this class. Problem sets will require that you
 have access to a computer with Matlab installed. You may want to purchase a student
 edition of Matlab or simply use the computer labs on campus. Alternatively, you can use
 the university’s virtual computer lab to use Matlab remotely. This allows you to run
 Matlab without having it installed on your local computer. For information on using the
 virtual computer lab go to the following page:
 http://eit.umd.edu/vcl
 Also note that many of the problems on the problem sets can be done using FreeMat, a
 free software package designed to emulate Matlab. FreeMat can be downloaded at:
 http://freemat.sourceforge.net/download.html

REQUIRED TEXTBOOK:

 Matlab: A Practical Introduction to Programming and Problem Solving, S. Attaway
 Note: While many of the topics covered in class are also presented in the textbook, some
 topics addressed in the lectures are not included in the textbook. You are responsible for
 all material covered in class and all assigned textbook readings.

ADDITIONAL REFERENCES:

 • Essential Matlab for Engineers and Scientists, Hahn and Valentine, Third Edition
 • An Introduction to Computer Simulation Methods, H. Gould and J. Tobochnik
 • Physical Modeling in Matlab, A. Downey. Can be purchased online or downloaded for
 free at: http://www.greenteapress.com/matlab/
Evaluations:

1. **Problem sets**: 8 total
2. **In class exams**: Friday March 1 (tentative), and Monday, April 22 (tentative)
3. **Programming Project**: Due Wednesday, May 1. In class presentations Wednesday, May 1 and Friday, May 3. Your final programming project will require you to choose a programming problem that involves either multiple interacting elements or stochastic processes. You will write a computer program (about 75-100 lines of code without comments) to calculate the system behavior. Your submission will include a written description of your problem and your approach, as well as your code. You will also describe and demonstrate your program in a 5-10 minute presentation for the class. Additional details to follow.
4. **Final Exam**: Friday, May 17, 8-10am.

Grading:

Problem sets: 30%
In class exams (2): 15% each
Programming project: 20%
Final Exam: 20%
Participation and attendance will count toward borderline grade cases.

Policy for Late Homework Submissions:

- Submissions received on time will be scored at the 100% level.
- Submissions received after the deadline, but with 24 hours thereof, will be scored at the 75% level. *(i.e. you can receive at most 75% of the total possible points.)*
- Between 1 & 2 days late: 60%
- Between 2 & 3 days late: 45%
- Between 3 & 4 days late: 30%
- Between 4 & 5 days late: 15%
- No submissions accepted after 5 days.
- Exceptions can be granted for serious situations, documentation necessary.
- The entire problem set will be scored at a single level as indicated above. *(i.e., you can’t submit part of it to be scored at the 100% level and the rest at the 75% level.)*

Academic Honesty:

Working together on assignments is encouraged. However, each student is expected to do the assigned problems and write the assigned programs independently, and hand in his or her own work for grading. If you work with other students on a problem set, you must list their names on the first sheet of your submitted solutions. Examinations are to be worked completely independently.
Basic concepts for scientific programming (~4 weeks)
- Intro to Matlab, variables: scalars and arrays (Chapter 1) – W 1/23, F 1/25
- Simple Matlab scripts and functions (Chapter 2) – M 1/28, W 1/30
- If statements, for and while loops (Chapters 3 and 4) – F 2/1, M 2/4, W 2/6, F 2/8, M 2/11
- Logical variables and masks – W 2/13, F 2/15
- Errors, pitfalls, and debugging (Chapter 5) – M 2/18, W 2/20

Application: Dynamical systems, chaos and fractals (~1 week)
F 2/22, M 2/25, W 2/27

Numerical methods for the physical sciences: Part I (~1 week)
- Root finding – M 3/4, W 3/6
- Curve fitting (Chapter 14) – F 3/8, M 3/11

More advanced programming concepts (~2 weeks)
- Strings (Chapter 6) – W 3/13, F 3/14
- Recursion (Chapter 9) – M 3/25, W 3/27
- Advanced data structures (Chapter 7) – F 3/29, M 4/1
- Basic statistics, searching and sorting (Chapter 12) – W 4/3

Monte Carlo simulations (~2 weeks)
- Monte Carlo integration – F 4/5
- Computational studies of error propagation – M 4/8, W 4/10
- Simple stochastic simulations: random walks, levy flights, physically inspired cellular automata
 F 4/12, M 4/15, W 4/17

Numerical methods, Part II: Integration and ODEs (Chapter 14) (~2 weeks)
F 4/19, W 4/24, F 4/26, M 4/29, M 5/6
IMPORTANT DATES (The dates listed below are tentative. Any changes will be announced in class and via the course website):

Monday, 2/4: Problem Set #1 due
Wednesday, 2/13: Problem Set #2 due
Friday, 2/22: Problem Set #3 due
Friday, 3/1: Exam #1 in class
Wednesday, 3/6: One paragraph description of your final project problem choice due.
Monday, 3/11: Problem Set #4 due
Wednesday, 3/27: Problem Set #5 due
Monday, 4/1: One half to one page description of your programming approach for your final project due
Monday, 4/8: Problem Set #6 due
Wednesday, 4/17: Problem Set #7 due
Monday, 4/22: Exam #2 in class
Wednesday, 5/1: Final projects due, in class presentations begin
Friday, 5/3: Final project presentations conclude
Monday, 5/6: Problem Set #8 due