5 years in a Net-Zero-Electricity Solar Home

“Everything you wanted to know about home solar energy, but did not know whom to ask”

Victor Yakovenko
Department of Physics, University of Maryland, College Park, USA
http://physics.umd.edu/~yakovenk/solar-home/

10 PV panels (2.15 kW) installed January 25-26, 2011 with battery backup

Continuously operated since Mar 9, 2011

Extra 3 PV panels (2.8 kW total) installed Oct 26, 2011, area 12.6/16.4 m²

Sanyo HIT 215A; efficiency: cell 19.3%, module 17.1%; same as on the winning UMD Solar Decathlon House 2011

Generated 16 MWh in 5.5 years = 7.8 kWh/day, >100% of consumption

College Park, near Metro Station
Installed by StandardSolar.com
Novel HIT design by Sanyo

HIT (Heterojunction with Intrinsic Thin Layer) Solar Cell is composed of thin single crystalline Si wafer sandwiched by ultra-thin a-Si layers.

HIT Double collects light from two sides.

Sanyo solar panels HIT 215A 215 W, cell efficiency 19.3%, module efficiency 17.1%.

SunPower and Sanyo make consumer modules of the highest efficiency.

We needed the highest efficiency because of our limited area of exposure.

http://us.sanyo.com/Solar/
21st Annual Metropolitan Washington, DC

Tour of Solar Homes

October 1 & 2, 2011
11 am to 5 pm

Virginia Solar Council
Potomac Regional Solar Energy Association
American Solar Energy Society

www.solartour.org

6573 Autumn Wind Circle, Clarksville, MD

The homeowner has reduced the dependency on fossil fuels by various conservation measures and reliance on renewable sources of energy. The solar panels are grid-tied with net metering so that the electric meter runs backward when the panels provide more energy than needed. It is connected to a battery back-up system, useful during power outages. Prior to the installation of the solar panels, the homeowner took a comprehensive approach to reducing energy use through conservation. This included installation of foam insulation in all of the exterior walls. A whole house fan was installed reducing the need for air conditioning. Insulating film was placed on most of the windows to reflect the sun's heat in the summer. All light bulbs are energy efficient. For winter heating, a highly efficient pellet fireplace was installed.

These measures cut the consumption of electricity from the electric company from a high of 2000 kWh to below 500 per month. Additional efforts at reducing the reliance on fossil fuels include an electrical rechargeable lawn mower and a hybrid automobile. The homeowners have installed a rain water collection system for gardening. Finally, children in the house are charged 25 cents for leaving a light on!

DIRECTIONS
From Route 95, take Route 32W towards Columbia. Proceed 5.9 miles and take Exit 19 toward Great Star Dr. and turn left onto Great Star Dr. Go 0.3mi and turn right onto Autumn Wind Circle and proceed down hill to 6573.
Solar Tour in DC area: 1st weekend of October every year SolarTour.org
Besides photovoltaic (PV) modules (solar panels), inverters are needed to transform direct current (dc) from PV into alternating current (ac) in the electric grid.

Old style: One big inverter on the wall for all roof panels connected in series. One panel blocks all.

New style: Individual microinverters for each panel on the roof. Parallel, independent operation, data communication, scalability.

Typically, a PV system is connected to the grid, so energy flows out on a sunny day and in at night. The electric utility company (PEPCO) bills monthly for the difference (net metering). Negative balance (credit for generation) carries over, but once a year PEPCO pays cash for the net credit.

To operate PV during grid outage, it is necessary to have a battery backup to stabilize the system. Otherwise, PV shuts down when grid goes down.

Shade from trees can be measured. See also SunNumber of zillow.com
Solar Obstruction Data

<table>
<thead>
<tr>
<th>Month</th>
<th>Unshaded % of Ideal Site</th>
<th>Actual Solar Rad w/ Shading</th>
<th>Actual AC Energy (KWH) w/ shading</th>
<th>Actual AC Energy (KWH) w/o shading</th>
<th>Ideal AC Energy (KWH) w/o shading</th>
<th>Solar Cost Savings 0.11 ($/KWH)</th>
<th>PV Watts Unshaded % Actual Site Efficiency % Azimuth=180.0 Tilt=25.06</th>
<th>Actual Site Efficiency % Azimuth=180.0 Tilt=25.06</th>
<th>Ideal Site Efficiency % Azimuth=180.0 Tilt=35.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>50.36%</td>
<td>1.42</td>
<td>81.24</td>
<td>157.0</td>
<td>174.0</td>
<td>$8.94</td>
<td>60.52 %</td>
<td>65.68 %</td>
<td>50.00 %</td>
</tr>
<tr>
<td>February</td>
<td>71.18%</td>
<td>2.50</td>
<td>129.80</td>
<td>175.0</td>
<td>191.0</td>
<td>$14.28</td>
<td>71.76 %</td>
<td>66.08 %</td>
<td>70.82 %</td>
</tr>
<tr>
<td>March</td>
<td>81.81%</td>
<td>3.73</td>
<td>205.56</td>
<td>245.0</td>
<td>255.0</td>
<td>$22.51</td>
<td>81.93 %</td>
<td>79.48 %</td>
<td>81.94 %</td>
</tr>
<tr>
<td>April</td>
<td>96.22%</td>
<td>5.60</td>
<td>294.14</td>
<td>285.0</td>
<td>277.0</td>
<td>$31.26</td>
<td>99.80 %</td>
<td>100.00 %</td>
<td>99.61 %</td>
</tr>
<tr>
<td>May</td>
<td>98.86%</td>
<td>4.96</td>
<td>252.82</td>
<td>233.0</td>
<td>236.0</td>
<td>$27.81</td>
<td>98.94 %</td>
<td>100.00 %</td>
<td>98.69 %</td>
</tr>
<tr>
<td>June</td>
<td>90.05%</td>
<td>5.91</td>
<td>265.00</td>
<td>245.0</td>
<td>262.0</td>
<td>$31.35</td>
<td>69.00 %</td>
<td>100.00 %</td>
<td>90.04 %</td>
</tr>
<tr>
<td>July</td>
<td>96.10%</td>
<td>5.79</td>
<td>295.00</td>
<td>265.0</td>
<td>264.0</td>
<td>$31.35</td>
<td>99.17 %</td>
<td>100.00 %</td>
<td>96.18 %</td>
</tr>
<tr>
<td>August</td>
<td>96.57%</td>
<td>5.60</td>
<td>275.15</td>
<td>244.0</td>
<td>243.0</td>
<td>$30.35</td>
<td>97.04 %</td>
<td>100.00 %</td>
<td>99.12 %</td>
</tr>
<tr>
<td>September</td>
<td>84.83%</td>
<td>4.18</td>
<td>205.70</td>
<td>242.0</td>
<td>243.0</td>
<td>$22.51</td>
<td>99.32 %</td>
<td>100.00 %</td>
<td>94.48 %</td>
</tr>
<tr>
<td>October</td>
<td>71.56%</td>
<td>3.41</td>
<td>176.64</td>
<td>251.0</td>
<td>269.0</td>
<td>$19.43</td>
<td>70.00 %</td>
<td>65.38 %</td>
<td>70.12 %</td>
</tr>
<tr>
<td>November</td>
<td>55.68%</td>
<td>1.65</td>
<td>84.18</td>
<td>151.0</td>
<td>167.0</td>
<td>$9.26</td>
<td>55.49 %</td>
<td>50.11 %</td>
<td>55.18 %</td>
</tr>
<tr>
<td>December</td>
<td>44.33%</td>
<td>1.25</td>
<td>67.79</td>
<td>152.0</td>
<td>173.0</td>
<td>$7.46</td>
<td>43.80 %</td>
<td>38.37 %</td>
<td>43.35 %</td>
</tr>
<tr>
<td>Totals</td>
<td>79.06%</td>
<td>40.05</td>
<td>2,330.75</td>
<td>2,764.00</td>
<td>2,779.90</td>
<td>$258.71</td>
<td>79.49 %</td>
<td>77.33 %</td>
<td>79.23 %</td>
</tr>
</tbody>
</table>

Notes: [None]
Sequence of steps (done by the installation company):

- Initial e-mail contact with Standard Solar, check satellite view of the house on Google maps, decide on feasibility
- House visit of a representative, discuss parameters of a contract, pay initial deposit
- Engineering design, get building and electric permits, procure parts
- Installation, usually < day. Better in a cool season to protect roof shingles
- Electric inspection by the county, change of electric meter, approval from the utility company, switch on
- Apply for rebates (state, county, federal), sign a contract with a SREC aggregator (e.g. Sol Systems), register the system for SRECs, receive cash
- Watch electric meter spinning backwards 😊

After signing of the contract and in preparation for PV installation, we replaced a leaky plywood panel and shingles on the roof. We installed Solaris brand of shingles from CertainTeed with enhanced reflection coefficient to keep the roof cooler.

Overheating of the attic is a serious problem: with the air temperature 100 F (38 C), the attic temperature was 137 F / 59 C (2008), but decreased to 110 F / 43 C (2011) after installing ridge vent, reflective sheets inside, Solaris shingles, PV panels, and thick bats of fiberglass insulation between the attic and the 2^{nd} floor.
PV installation and snowstorm afterwards

Jan 25, 2011, PV done on the 1st day

Jan 28, 2011, after a huge snowstorm

Installation and wiring of the battery backup was finished on the 2nd day, Jan 26, at 4 pm. At 8 pm, a huge snowstorm arrived, and the grid went down. We survived the night on battery backup, which powered gas furnace, kitchen fridge, sump pump, Internet, and some lights and outlets. Next day, we generated 4 kWh of PV energy and recharged batteries back to full. On our block, the grid was restored after 20 hours, but in some areas it was down up to 5 days!
Battery backup in the basement

PV, critical loads

Grid, non-critical loads

Charger/Inverter for the batteries

PV data display / Web interface

Data display for the Charger/Inverter

Batteries, 10 kWh
Energy-saving measures

After the snowstorm, I measured our critical-load electric consumption using Kill A Watt. Our kitchen fridge consumed about 2 kWh/day. We bought a new fridge of the same size by General Electric, which consumes 1 kWh/day.

Then, I measured electric consumption of all pluggable electric devices in the house and put all sleeping electronic devices on switches. I replaced a 300 W halogen floor lamp by a 13 W compact fluorescent bulb, etc. This measures have reduced the baseload electric consumption by about 30%. All lights in the house are fluorescent and LED.

How to balance energy budget: increase production and reduce consumption!
Better insulation of the house with poured-in foam

Liquid phenolic foam is pumped between exterior and interior walls and fills all cavities, then turns into solid closed-cell foam. Done by USAinsulation.net
The most efficient dehumidifier on the market

Santa Fe Impact XT, seasonal consumption ~200 kWh, dehumidifies the whole basement and house (using central fan).

It often substitutes air conditioner and can be operated during outage.

We used air conditioner for 47 days in 2011 and 31 day in 2012.

Energy consumption of all electric appliances is listed at EnergyStar.gov by DOE.
Cumulative 5 years 8 months, 9 March 2011 – 9 November 2016

- Production
- Consumption
- Net meter

Annual PV 2.87 MWh, usage 2.5 MWh now vs. 6 MWh in 2010, typical home 14 MWh
UMD people who have residential PV installations

Jeffrey Lynn, NIST Fellow and Team Leader, Adjunct Professor of Physics

Reinhard Radermacher
Professor of Mechanical Engineering, Director of Center for Environmental Energy Engineering

Peter Shawhan
Associate Professor of Physics

Marla McIntosh, Professor of Plant Sciences
https://enlighten.enphaseenergy.com/public/systems/drUs9509

They all have much bigger PV installations (x3) than mine
Conclusions

- **Technology is mature:** PV efficiency pushing to 20%, PV warranty 20 years, slick microinverters, warranty 15 years
- **Service:** well-established installation companies with long record and experience
- **Cost:** affordable, unprecedented subsidies, 30% Federal tax credit + MD state + PG county + SRECs (solar renewable energy credits) – total discount > 50%
- **PV module prices are decreasing:** overcapacity due to collapse of European subsidies, ramped-up Si production for PV instead of electronics leftovers
- **We wanted a backup system.** Grid outages in DC area became endemic (4 last year): winter (no heat), summer (food spoils), rain (water in buckets, no sump pump), just too hot (chain explosions of overloaded transformers)
- Yet, a backup would be used only 1% of time. **PV + battery backup** looks like a good combination: generates power all year, but also in emergency.
- **Battery backup vs. generators:** no fuel, no moving parts, no maintenance, indoor installation, easy electric connections, but a finite number of charge cycles.

Now is the time to do it!

The time for massive adoption of solar power has arrived.
UMD installed PV system on the former Washington Post printing plant in College Park (August 2011)

http://newsdesk.umd.edu/scitech/release.cfm?ArticleID=2341
http://datareadings.com/client/moduleSystem/Kiosk/site/bin/kiosk.cfm?k=5QJba0pN

Severn Building UMD:
2,600 solar panels
631 kW power
792 MWh annual
Standard Solar installer

American University:
532 kW power,
637 MWh annual,
on Katzen Arts Center, Bender Library, etc.,
Standard Solar installer,
Washington Gas Energy Services owner & operator

http://www.standardsolar.com/node/1292
Severn Building UMD, also Lowe’s, IKEA, etc.

University Park Community Solar LLC, Church of the Brethren, 22 kW, May 2010, Standard Solar installer
SURFACE AREA REQUIRED TO POWER THE WORLD WITH ZERO CARBON EMISSIONS AND WITH SOLAR ALONE

Areas are calculated based on an assumption of 20% operating efficiency of collection devices and a 2000 hour per year natural solar input of 1000 watts per square meter striking the surface.

- These 19 areas distributed on the map show roughly what would be a reasonable responsibility for various parts of the world based on 2009 usage. They would be further divided many times, the more the better to reach a diversified infrastructure that localizes use as much as possible.
- The large square in the Saharan Desert (1/4 of the overall 2030 required area) would power all of Europe and North Africa. Though very large, it is 18 times less than the total area of that desert.
- The definition of “power” covers the fuel required to run all electrical consumption, all machinery, and all forms of transportation. It is based on the US Department of Energy statistics of worldwide Btu consumption and estimates the 2030 usage (678 quadrillion Btu) to be 44% greater than that of 2008.
- Area calculations do not include magenta border lines.

BOXES TO SCALE WITH MAP

- 1980 (based on actual use) 207,368 SQUARE KILOMETERS
- 2008 (based on actual use) 366,375 SQUARE KILOMETERS
- 2030 (projection) 496,805 SQUARE KILOMETERS

Required area that would be needed in the year 2030 is shown as one large square in the key above and also as distributed around the world relative to use and available sunlight.

www.landartgenerator.org
Energy Pay-Back Time of Multicrystalline Silicon PV Rooftop Systems - Geographical Comparison

Irradiation (kWh/m²/a) EPBT

<600 2.1 years
800
1000
1200
1400
1600
1800
2000
>2200
Can photovoltaics save the world?

- Global total energy consumption is about \(15 \text{ TW} = 15,000 \text{ GW}\)
- Current global annual PV installation rate is about \(50 \text{ GW/year}\)
- At the current rate, it would take 300 years to switch global energy to PV
- PV installation rate has to increase by \(x10\) to reduce the time to 30 years