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Derivations of the Boltzmann-Gibbs

distribution P (ε) ∝ exp(−ε/T ) of

energy ε in statistical physics: -

6

0

P

ε

• As a “stable distribution”: ε1 ε2 = ε

ε1 + ε2 = ε, P (ε1)P (ε2) = P (ε) ⇒ P (ε) ∝ exp(−ε/T )

• By maximizing entropy S = −
∑

ε P (ε) lnP (ε) under the

constraint of conservation law:
∑

ε P (ε) ε = const.

• As a stationary solution of the Boltzmann equation:

dP (ε)/dt =
∑

ε′,∆

−w[ε,ε′]→[ε+∆,ε′−∆] P (ε)P (ε′)

+ w[ε+∆,ε′−∆]→[ε,ε′] P (ε + ∆)P (ε′ −∆).

If w[ε,ε′]→[ε+∆,ε′−∆] = w[ε+∆,ε′−∆]→[ε,ε′] (time-reversal

symmetry), then P (ε) ∝ e−ε/T is stationary: dP (ε)
dt = 0.



Analogy between Economics and Statistical Mechanics

Economics Statistical Mechanics

System Agents Particles

Conserved quantity Money, m Energy, ε
Probability Gibbs law,

distribution
P (m) - ?

P (ε) ∝ e−ε/T

As energy in physics, money is conserved in each economic

transaction. In trading, money is only transferred from

one agent to another, not created or destroyed. Because

of the conservation law, by analogy with classical statis-

tical mechanics, we expect that the probability distribu-

tion of money, P (m), obeys: P (m1 + m2) = P (m1)P (m2).

Thus, P (m) must be the exponential Gibbs distribution

P (m) ∝ e−m/T , where T is the effective temperature of

the economic system (expressed in dollars, for example).



Money, Wealth, and Income

Wealth = Money + Property (material wealth)

Money is conserved.

Material wealth is not conserved.

d(Money)/dt = Income - Spending



Modeling

• Many agents, N � 1. Agent j has the amount of money

mj ≥ 0. Initially, all agents are equal: mi = M/N , ∀i.

• Infinitely long range interaction. Any agent can interact

with any other agent with equal probability.

• Randomly chosen agents interact pairwise (one pair at a

time) and exchange money ∆m > 0:

[mi, mj] −→ [m′i, m
′
j] = [mi + ∆m, mj −∆m].

If m′j < 0, the transaction does not take place.

• The agent i whose money increases (m′i > mi) is called a

winner. The agent j whose money decreases (m′j < mj)

is called a looser.



• Money is conserved by interactions:

mi + mj = m′i + m′j,
N∑

i=1
mi = M = constant.

• After many transactions, we find the stationary proba-

bility distribution of money P (m) shown in Fig. 1. The

stationary distribution does not depend on the choice of

trading rules (described below as Models 1, 2, 3, A, B,

Firms). The Gibbs law P (m) ∝ e−m/T fits the stationary

distribution with T = M/N = average money per agent.

• Entropy S = −
∑

m P (m) lnP (m) is shown in Fig. 2 as a

function of time. Entropy increases in time and saturates

for the stationary distribution. Entropy is maximal for the

Gibbs distribution.
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Fig. 1. Stationary probability distribution of money P(m) in Model 3.
The solid line is a fit to the Gibbs law P(m) ∝ exp(−m/T).
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Fig. 2. Entropy as a function of time for Model 1, Model 3, Government model,
and Multiplicative model.



Trading Rules

Model 1. Exchange a small constant amount ∆m, say $1.

Model 2. Exchange a random fraction 0 ≤ α ≤ 1 of the

average wealth of the pair: ∆m = α(mi + mj)/2.

Model 3. Exchange a random fraction of the average wealth

of the economy: ∆m = α M/N .

Selection of Winners and Losers

Model A. For a given pair (i, j), winner and loser are se-

lected randomly every time they interact: i←→ j ←→ k.

Model B. For every pair, winner and loser are randomly es-

tablished once, before the interactions start. In this case,

money flows along directed links between the agents:

i −→ j −→ k.



Model with Firms

To better simulate economy, we introduce firms in the model.

• One agent at a time is randomly selected to be a “firm”:

• borrows capital K from a randomly selected agent and

then returns it with an interest rK

• hires L other randomly selected agents and pays them

wages W

• makes Q items of a product and sells it to Q randomly

selected agents at a price R

• The net result is a many-body interaction, where

• one agent increases his money by rK

• L agents increase their money by W

• Q agents decrease their money by R

• the firm receives profit πf = RQ− LW − rK



• The parameters of the model are selected following the

procedure described in economics textbooks:

• The aggregate demand-supply curve for the product is

taken to be: R(Q) = V/Qα, where Q is the quantity

people would buy at a price R, and α = 0.5 and V =

100 are constants.

• The production function of the firm has the conven-

tional Cobb-Douglas form: Q(L, K) = LβK1−β, where

β = 0.8 is a constant.

• In our simulation, we set W = 10. After maximizing

πf with respect to K and L, we find: L = 20, Q = 10,

R = 32, πf = 68.

• The stationary probability distribution of money in this

model again has the Gibbs form P (m) ∝ exp(−m/T ).



Boltzmann Equation

dP (m)

dt
=

∑

m′,∆

−w[m,m′]→[m+∆,m′−∆] P (m)P (m′)

+ w[m+∆,m′−∆]→[m,m′] P (m + ∆)P (m′ −∆),

where w[m,m′]→[m+∆,m′−∆] is the probability for the trade

[m, m′]→ [m + ∆, m′ −∆] to happen. If the model has the

time-reversal symmetry, then

w[m,m′]→[m+∆,m′−∆] = w[m+∆,m′−∆]→[m,m′].

In this case, the Gibbs distribution P (m) ∝ exp(−m/T ) is

stationary: dP (m)/dt = 0. However, if the time-reversal

symmetry is broken, the system may have a non-Gibbs sta-

tionary distribution or no stationary distribution at all.



Boltzmann Equation for Model 1 ($1 exchange)

dPm

dt
= Pm+1

∞∑

n=0
Pn + Pm−1

∞∑

n=1
Pn

−Pm

∞∑

n=0
Pn − Pm

∞∑

n=1
Pn

= (Pm+1 + Pm−1 − 2Pm) + P0(Pm − Pm−1),

where
∞∑

n=0
Pn = 1.

The stationary solution is Pm = e−m/T (1− e−1/T)



Models with non-Gibbs Distributions of Money

Multiplicative exchange. The agents exchange a fixed

fraction α of looser’s money:

[mi, mj] −→ [(1− α)mi, mj + αmi].

This model breaks the time-reversal symmetry, because

the reversed interaction does not lead to the original

configuration: [mi, mj] −→ [(1− α)mi, mj + αmi] −→

[(1−α)mi +α(mj +αmi), (1−α)(mj +αmi)] 6= [mi, mj]

The model was studied by S. Ispolatov, P. L. Krapivsky,

S. Redner, Eur. Phys. J. B 2, 267 (1998), who found

non-Gibbs stationary distributions for α 6= 1/2. We con-

firm their result in our simulation shown in Fig. 4.
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N=500, M=5*105, α=1/3.

Fig. 4. Stationary probability distribution of money P(m) in the Multiplicative model
with α = 1/3. The high-m tail of the distribution is exponential.



Taxes and Subsidies. Consider a special agent (“govern-

ment”) that collects a tax on every transaction in the

system. The collected money is equally divided between

all agents of the system, so that each agent receives the

subsidy δm with the frequency 1/τs. Assuming that δm

is small and approximating the collision integral with a

relaxation time τr, we get a Boltzmann equation

∂P (m)

∂t
+

δm

τs

∂P (m)

∂m
= −

P (m)− P̃ (m)

τr
,

where P̃ (m) is the equilibrium Gibbs function.

The second term acts as an electric force applied to elec-

trons in metal and pumps out the low-money population.
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Fig. 3. Histogram: stationary probability distribution of money in the model with
taxation and subsidies; solid curve: the Gibbs law.



Models with Debt

• The boundary condition m ≥ 0 was crucial in establishing

the Gibbs distribution law. What changes when agents

are permitted to go into debt?

• Now agent’s money can be negative, but no lower than

a maximum debt, m > −mD = −800.

• The resultant distribution is the Gibbs one again with a

higher temperature (Fig. 5). The distribution is broader,

which implies higher inequality between agents.
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Fig. 5. The stationary probability distributions of money P(m) with and without
debt. The solid lines are fits to the Gibbs laws with different temperatures.



Model with Bank

Agents Bank

Trade between themselves Keeps agents’ money as deposits

Get loans from bank if they need Gives loans until legally allowed

Pay monthly interest if in debt Pays interest on deposits

Default if unable to pay the debt Takes the loss on unpaid loans

Depositor Bank Borrower
Time

Assets Liablties Assets Liabilities Assets Liablties

(1) m

m (IOU m m (to(2)
Bank) Depositor)

m (IOU m (IOU m (to m m (to(3)
Bank) Borrower) Depositor) Bank)



Loans and Debts

• When an agent takes a loan, his account is credited with

the loan, but also his debt is increased by the value of the

loan. We view this as a pair creation of positive (asset)

and negative (liability) money. This process conserves

the total amount of money.

• The bank that lends money receives an IOU from the

borrower, so bank’s balance does not change. If a bor-

rower defaults on the loan, his liability is transferred to

the bank and annihilates his IOU.

• As money, we count all financial instruments with fixed

denomination: currency, IOUs, bonds, etc. We do not

consider material assets or stocks as money, because their

denomination is not fixed.



• Net Worth = Assets − Liabilities

satisfies the conservation law.

• Traditionally, only assets are considered as money. This

quantity is not conserved because of debt. However, if

debt changes slowly, assets have a quasi-equilibrium dis-

tribution.

• In our model, we consider only one bank and set fixed

interest rates for loans (iL) and deposits (iD). We find

that bank’s activity can evolve into only two extremes:

(a) The bank gets deeper and deeper into debt, “creat-

ing” money in the system

(b) The bank ends up accumulating all the money in the

system
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Fig. 6. Probability distributions of assets P(m) in the system interacting with a bank,
and the time dependence of the bank account. Trades/Month = (a) 600, (b) 1500.



CONCLUSIONS

In a wide variety of models we find that the stationary prob-

ability distribution of money has the exponential Gibbs form

P (m) ∝ exp(−m/T )

This is a consequence of the conservation law for money.

Deviations from the Gibbs law are found in the models where

the time-reversal symmetry is broken.



Perspectives

• Thermal machines: T1←−©←− T2 T1 < T2

• Negative specific heat dS/dT < 0: Instabilities (compare

with gravitational systems, black holes)

• Experimental check: Comparison with actual economic

data

• Aggregation (bound states): Atoms vs molecules

• Phase transitions

• Stock market models: The role of total money flux


