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INTRODUCTION

During the last several years, in addition to his re-
search in condensed matter theory, Victor Yakovenko has
been working in a recently emerged field of studies of-
ten called “econophysics”. Econophysics applies statis-
tical physics methods to economical, financial, and so-
cial problems. Detailed references to the econophysics
research in Victor Yakovenko’s group are given in his
Web page http://www2.physics.umd.edu/~yakovenk/

econophysics.html. The results have been published
in refereed journals [1–6] and presented at international
conferences and seminars. His research has been reviewed
in a popular article in the American Scientist magazine
[7], and Australian Financial Review, the leading Aus-
tralian business newspaper, has published an op-ed col-
umn about his studies [8]. His student Adrian Dragulescu
received Ph.D. in 2002 and now works as a risk analyst
at the Constellation Energy Group in Baltimore, which
is the owner of Baltimore Electric and Gas Company.
Currently Victor Yakovenko works with another gradu-
ate student A. Christian Silva.

STATISTICAL MECHANICS OF MONEY,
INCOME, AND WEALTH

In this Section, we overview Refs. [1–3, 6], which use
an analogy with statistical physics to describe probability
distributions of money, income, and wealth.

The equilibrium statistical mechanics is based on the
Boltzmann-Gibbs law, which states that the probabil-
ity distribution function (PDF) of energy E is P (E) =
Ce−E/T , where T is the temperature, and C is a nor-
malizing constant. The main ingredient in the textbook
derivation of the Boltzmann-Gibbs law is conservation of
energy. When two economic agents make a transaction,
some amount of money is transferred from one agent to
another, but the sum of their money before and after
transaction is the same: m1 + m2 = m′

1
+ m′

2
. Then,

by analogy with statistical physics, the equilibrium PDF
of money m in a closed system of agents should have
the Boltzmann-Gibbs form P (m) = Ce−m/T , where T is
the effective “money temperature” equal to the average
amount of money per agent. This exponential distribu-
tion is indeed observed in computer simulations [1], as

shown in Fig. 1.
It is interesting to compare this result with the actual

PDF of money in the society. Unfortunately, it is very
difficult to find the data on distribution of money m. On
the other hand, a lot of statistical data is available for
distribution of income r (for revenue). Fig. 2 shows that
the PDF of individual income in USA is very well fitted
by the exponential function P (r) = Ce−r/T [2].

The standard plot of PDF inevitably puts an upper
limit on the horizontal axis (120 k$/year in Fig. 2). A
standard way of representing the whole income distribu-
tion without any truncation is the so-called Lorenz curve
shown in Fig. 3. The horizontal axis of the Lorenz curve,
x(r), represents the fraction of population with incomes
below r, and the vertical axis y(r) represents the frac-
tion of the total income this population accounts for. As
r changes from 0 to ∞, x(r) and y(r) change from 0 to 1
and parametrically define the Lorenz curve in the (x, y)
space. The diagonal line y = x represents the Lorenz
curve in the case where all population has equal income.
The inequality of the actual income distribution is char-
acterized by the Gini coefficient 0 ≤ G ≤ 1, which is the
area between the diagonal and the Lorenz curve, nor-
malized to the area of the triangle beneath the diagonal.
For the exponential PDF, the Lorenz curve and the Gini
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FIG. 1: Probability distribution of money in computer simu-
lation [1].
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FIG. 2: Probability distribution of individual income in USA
in 1996 [2].

coefficient can be easily calculated [2]:

y = x + (1 − x) ln(1 − x), G = 1/2. (1)

The solid line in Fig. 3 shows the theoretical Lorenz curve
given by Eq. (1), and the points show the income data
for 1979–1997. The agreement is quite good, in the first
approximation, given that the curve (1) has no fitting
parameters. The inset shows that the Gini coefficient is
close to the theoretical value 1/2, although the inequality
does increase during the last 20 years.

One may notice that discrepancy between the theory
and the data occurs at the upper end of Fig. 3. The
origin of this discrepancy becomes clear when we look at
the cumulative distribution of income up to 1 M$/year
shown in Fig. 4.
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FIG. 3: Lorenz curve (main panel) and Gini coefficient (inset).
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FIG. 4: Cumulative probability distribution of individual in-
come in log-log (main panel) and log-linear (inset) scales [6].

It is clear from Fig. 4 that income distribution for
the great majority of population (more than 97%) is de-
scribed by the exponential Boltzmann-Gibbs law. How-
ever, for a small fraction of population (less than 3%)
with income above 100 k$/year, the PDF changes to the
Pareto power law. The extra income in the upper tail
of the distribution can be considered as a “Bose conden-
sate”, and the Lorenz curve should be modified as [6]

y = (1 − f) [x + (1 − x) ln(1 − x)] + f δ(1 − x), (2)

where the last term is the delta-function, and f is the
fraction of income in the “Bose condensate”. As shown
in Fig. 5, Eq. (2) gives an excellent fit of the data, and
f = 16% in 1997.

Thus far we discussed the distribution of individual
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FIG. 5: Lorenz curve given by Eq. (2).
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FIG. 6: Probability distribution of family income.

income. By taking a convolution of two exponential
distributions, it is easy to show that the PDF of fam-
ily income is given by the modified exponential formula
P (r) = Cre−r/T [2]. As Fig. 6 shows, this formula is in
excellent agreement with the data. The corresponding
Lorenz curve for family income is shown in Fig. 7 and
compared with the data from the Bureau of Census for
1947–1994. It is amazing that the shape of the income
distribution remains the same for half a century, and it
is in agreement with the theoretical formula.

The theoretically calculated Gini coefficient for fam-
ily income is 3/8=37.5% [2]. The inset in Fig. 7 shows
that the Gini coefficient in USA reported by the Bureau
of Census for 1947–1994 is very close to the theoretical
value. The average Gini coefficients for different regions
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FIG. 7: Lorenz curve and Gini coefficient for family income.
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FIG. 8: Gini coefficients for different regions of the World [9].

of the World in 1988 and 1993 are shown in Fig. 8. For
the well-developed market economies of West Europe and
North America, the Gini coefficient is very close to the
calculated value 37.5% and does not change in time. In
other regions of the World, income inequality is higher.
The special case is the former Soviet Union and East Eu-
rope, where inequality was lower before the fall of com-
munism and has greatly increased afterwards.

In statistical physics, the exponential Boltzmann-
Gibbs distribution is the equilibrium one, because it max-
imizes entropy. The data shown above demonstrate that
probability distribution of income is also described by
the Boltzmann-Gibbs law, and the equilibrium state of
maximal entropy has been achieved in developed market
economies.

PROBABILITY DISTRIBUTION OF
STOCK-MARKET FLUCTUATIONS

The first theory of stock-market fluctuations was pro-
posed in 1900 in the Ph.D. thesis of the French math-
ematical physicist Louis Bachelier [10]. (Henri Poincar
was on his Ph.D. committee.) His thesis developed the
concept of Brownian motion (before the famous Ein-
stein’s paper of 1905) for stock-market prices. A mod-
ern version of this theory is routinely used in financial
literature. The theory predicts a Gaussian probability
distribution for stock-price fluctuations. On the other
hand, it is well known that the tails of the distribution
are not Gaussian (the so-called “fat tails”). To improve
agreement, it was proposed that the diffusion coefficient
of the Brownian motion is not a constant, but itself is
a stochastic variable. One popular model was proposed
by Steve Heston, who is a faculty of the Department of
Finance, University of Maryland.
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In Ref. [4], Dragulescu and Yakovenko derived the
probability distribution of price changes for the Heston
model and compared it with the data. Fig. 9 shows the
probability distribution of log-return x for the Dow-Jones
index during the 20-years period 1982–2001. (In the main
panel of Fig. 9, the curves are offset vertically for clar-
ity; the inset shows the same curves without offset.) The
log-return x = ln(S2/S1) is the logarithm of the ratio of
the stock prices S2 and S1 for two moments of time t2
and t1 with the average market growth subtracted. The
probability distribution Pt(x) depends on the time lag
t = t2 − t1, which is indicated near each curve in Fig.
9. The solid curves show the analytically derived distri-
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FIG. 10: Scaling plot of the probability distribution of log-
return x.

bution, and the points show the Dow-Jones data. We

see that the Dragulescu-Yakovenko formula [4] very well
describes Pt(x) for a broad range of time lags from one
day to one year (252 trading days).

Dragulescu and Yakovenko also found that for times t
longer than the relaxation time of the model, Pt(x) be-
comes a function of a single combination z of the two
variables x and t. Thus, when plotted vs. z, the points
for different time lags should collapse on a single scaling
curve. That indeed happens, as show in Fig. 10. The
solid line is the theoretically calculated scaling curve ex-
pressed in terms of a modified Bessel function. Notice
that the agreement extends over seven orders of magni-
tude on the vertical axis.

In the recent paper [5], Silva and Yakovenko found that
the same results hold for Nasdaq and S&P 500 in 1980s
and 1990s. By analyzing the statistics of fluctuations,
they concluded that the decline of stock market after
2000 is a long-term change of regime, not a temporary
fluctuation, unlike the crash of 1987.

CONCLUSIONS

We have demonstrated that methods and techniques
of statistical physics can be successfully applied to eco-
nomical and financial problems. The great experience of
physicists in working with experimental data gives them
a unique advantage to uncover quantitative laws in the
statistical data available in economics and finance. The
interdisciplinary field of econophysics is bringing new in-
sights and new perspectives, which are likely to revolu-
tionize the old social disciplines.
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