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Abstract

We analyze the data on personal income distribution from the Australian Bureau of Statistics. We compare fits of the

data to the exponential, log-normal, and gamma distributions. The exponential function gives a good (albeit not perfect)

description of 98% of the population in the lower part of the distribution. The log-normal and gamma functions do not

improve the fit significantly, despite having more parameters, and mimic the exponential function. We find that the

probability density at zero income is not zero, which contradicts the log-normal and gamma distributions, but is consistent

with the exponential one. The high-resolution histogram of the probability density shows a very sharp and narrow peak at

low incomes, which we interpret as the result of a government policy on income redistribution.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The study of income distribution has a long history. More than a century ago, Pareto [1] proposed that
income distribution obeys a universal power law, valid for all time and countries. Subsequent studies found
that this conjecture applies only to the top 1–3% of the population. The question of what is the distribution
for the majority (97–99%) of population with lower incomes remains open. Gibrat [2] proposed that income
distribution is governed by a multiplicative random process resulting in the log-normal distribution. However,
Kalecki [3] pointed out that such a log-normal distribution is not stationary, because its width keeps increasing
with time. Nevertheless, the log-normal function is widely used in literature to fit the lower part of income
distribution [4–6]. Yakovenko and Drăgulescu [7] proposed that the distribution of individual income should
follow the exponential law analogous to the Boltzmann–Gibbs distribution of energy in statistical physics.
They found substantial evidence for this in the statistical data for USA [8–11]. Also widely used is the gamma
distribution, which differs from the exponential one by a power-law prefactor [12–14]. For a recent collection
of papers discussing these distributions, see the book [15].

Distribution of income x is characterized by the probability density function (PDF) PðxÞ, defined so that the
probability to find income in the interval from x to xþ dx is equal to PðxÞdx. The PDFs for the distributions
e front matter r 2006 Elsevier B.V. All rights reserved.
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discussed above have the following functional forms:

PðxÞ ¼

1

T
expð�x=TÞ exponential;

1

xs
ffiffiffiffiffiffi
2p
p exp

�log2ðx=mÞ

2s2

� �
log-normal,

ðbÞ�ð1þaÞ

Gð1þ a; 0Þ
xa expð�x=bÞ gamma.

8>>>>>>>><
>>>>>>>>:

(1)

The exponential distribution has one parameter T, and its PðxÞ is maximal at x ¼ 0. The log-normal and
gamma distributions have two parameters each: ðm; sÞ and ðb; aÞ. They have maxima (called modes in
mathematical statistics) at x ¼ me�s2 and x ¼ ab, and their PðxÞ vanish at x ¼ 0. Many researchers impose the
condition Pð0Þ ¼ 0 a priori, ‘‘because people cannot live on zero income’’. However, this assumption must be
checked against the real data.

In this paper, we analyze statistical data on personal income distribution in Australia for 1989–2000 and
compare them with the three functions in Eq. (1). The data were collected by the Australian Bureau of
Statistics (ABS) using surveys of population. The anonymous data sets give annual incomes of about 14,000
representative individuals, and each individual is assigned a weight. The weights add up to 1:321:5� 107 in
the considered period, which is comparable to the current population of Australia of about 20 million people.
In the data analysis, we exclude individuals with negative and zero income, whose total weight is about 7%.
These ABS data were studied in the previous paper [4], but without weights and with the emphasis on the
Pareto tail at high income. Here we reanalyze the data in the middle and low income range covering about
99% of the population, but excluding the Pareto tail. The number of data points in the Pareto tail is relatively
small in surveys of population, which complicates accurate analysis of the tail.

2. Cumulative distribution function

In this section, we study the cumulative distribution function (CDF) CðxÞ ¼
R1

x
Pðx0Þdx0. The advantage of

CDF is that it can be directly constructed from a data set without making subjective choices. We sort incomes
xn of N individuals in decreasing order, so that n ¼ 1 corresponds to the highest income, n ¼ 2 to the second
highest, etc. When the individuals are assigned the weights wn, the cumulative probability for a given xn is
C ¼

Pn
k¼1wk=

PN
k¼1wk, i.e., CðxÞ is equal to the normalized sum of the weights of the individuals with incomes

above x. We fit the empirically constructed CðxÞ to the theoretical CDFs corresponding to Eq. (1),

CðxÞ ¼

expð�x=TÞ exponential;

1

2
1� Erf

logðx=mÞ

s
ffiffiffi
2
p

� �� �
log-normal;

Gð1þ a;x=bÞ=Gð1þ a; 0Þ gamma;
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(2)

where ErfðxÞ ¼ ð2=
ffiffiffi
p
p
Þ
R x

0 e�z2 dz is the error function, and Gða;xÞ ¼
R1

x
za�1e�z dz.

To visualize CðxÞ, different scales can be used. Fig. 1(a) uses the log–linear scale, i.e., shows the plot of lnC

vs. x. The main panel in Fig. 1(b) uses the linear–linear scale, and the inset the log–log scale, i.e., lnC vs. ln x.
We observe that the log–linear scale is the most informative, because the data points approximately fall on a
straight line for two orders of magnitudes, which suggests the exponential distribution. To obtain the best fit in
the log–linear scale, we minimize the relative mean square deviation s2 ¼ ð1=MÞ

PM
i¼1ððCeðxiÞ �

CtðxiÞÞ=CeðxiÞÞ
2
� ð1=MÞ

PM
i¼1fln½CeðxiÞ� � ln½CtðxiÞ�g

2 between the empirical CeðxÞ and theoretical CtðxÞ

CDFs. For this sum, we select M ¼ 200 income values xi uniformly spaced between x ¼ 0 and the income at
which CDF is equal to 1%, i.e., we fit the distribution for 99% of the population. The minimization procedure
was implemented numerically in Matlab using the standard routines.

For the exponential distribution, the fitting parameter T determines the slope of lnC vs. x and has the
dimensionality of Australian dollars per year, denoted as AUD or simply $ (notice that 1 k$ ¼ 103 $). T is also
equal to the average income hxi for the exponential distribution. The parameters m and b for the log-normal
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Fig. 1. The CDF of income, shown in the log–linear (a), linear–linear (b), and log–log (inset) scales. The income values for different years

are normalized to the parameter T of the exponential distribution, given in Table 1. The lines show fits to different theoretical distributions

in Eq. (2).

Table 1

Parameters of the distributions (1) and (2) obtained by minimization of the relative mean square deviation s2 between the empirical and

theoretical CDFs

Year T (k$) m (k$) s b (k$) a s Peak

Exp (%) L–N (%) Gamma (%) $

1989–1990 17.8 15.1 0.74 13.4 0.39 13 11 6.8 6196

1993–1994 18.5 18.8 0.63 13.1 0.59 18 9.6 5.7 7020

1994–1995 19.6 17.7 0.71 14.9 0.40 15 9.4 5.5 7280

1995–1996 20.5 18.2 0.72 15.7 0.39 14 8.6 6.5 7280

1996–1997 21.2 18.9 0.72 16.5 0.37 14 8.4 7.7 7540

1998–1999 23.7 19.0 0.79 19.6 0.25 10 11 7.1 7800

1999–2000 24.2 19.6 0.78 19.3 0.30 11 11 7.2 7800

The last column gives position of the sharp peak in Fig. 2(b).
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and gamma distributions also have the dimensionality of AUD, and the average incomes hxi for these two
distributions are mes2=2 and bGðaþ 2; 0Þ=Gðaþ 1; 0Þ. The parameters s and a are dimensionless and
characterize the shape of the distributions. The values of these parameters, obtained by fits for each year, are
given in Table 1. Using the values of T, we plot C vs. x=T in Fig. 1. In these coordinates, the CDFs for
different years (shown by different symbols) collapse on a single curve for the lower 98% of the population.
The collapse implies that the shape of income distribution is very stable in time, and only the scale parameter T

changes in nominal dollars. The three lines in Fig. 1 show the plots of the theoretical CDFs given by Eq. (2). In
these coordinates, the exponential CDF is simply a straight line with the slope �1. For the plots of the log-
normal and gamma CDFs, we used the parameters s ¼ 0:72, m=T ¼ 0:88, a ¼ 0:38, and b=T ¼ 0:77 obtained
by averaging of the parameters in Table 1 over the years. We observe that all three theoretical functions give
reasonably good, albeit not perfect, fits of the data with about the same quality, as confirmed by the values of
s in Table 1. Although the log-normal and gamma distributions have the extra parameters s and a, the fitting
procedure selects their values in such a way that these distributions mimic the exponential shape. Actually, we
constructed the gamma fit only for 98% of the population, because the fit for 99% gives a ¼ 0, i.e., the
exponential. We conclude that the exponential distribution gives a reasonable fit of the empirical CDFs with
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only one fitting parameter, whereas the log-normal and gamma distributions with more fitting parameters do
not improve the fit significantly and simply mimic the exponential shape.

However, by construction, CðxÞ is always a monotonous function, so one may argue that different CDFs
look visually similar and hard to distinguish. Thus, it is instructive to consider PDF as well, which we do in the
next section.

3. Probability density function

In order to construct PðxÞ, we divide the income axis into bins of width Dx, calculate the sum of the weights
wn of the individuals with incomes from x to xþ Dx, and plot the obtained histogram. However, there is
subjectiveness in the choice of the width Dx of the bins. If the bins are too wide, the number of individuals in
each bin is big, so the statistics is good, but fine details of the PDF are lost. If the bins are too narrow, the
number of individuals in each bin is small, thus relative fluctuations are big, so the histogram of PDF becomes
noisy. Effectively, PðxÞ is a derivative of the empirical CðxÞ. However, numerical differentiation increases noise
and magnifies minor irregularities of CðxÞ, which are not necessarily important when we are interested in the
universal features of income distribution. To illustrate these problems, we show PDFs obtained with two
different bin widths in Fig. 2.

Fig. 2(a) shows the coarse-grained histogram of PðxÞ for all years with a wide bin width Dx=T � 0:43. The
horizontal axis represents income x rescaled with the values of T from Table 1. The lines show the exponential,
log-normal, and gamma fits with the same parameters as in Fig. 1. With this choice of the bin width, the
empirical PðxÞ is a monotonous function of x with the maximum at x ¼ 0, and the exponential function gives a
reasonable overall fit. The log-normal and gamma fits have maxima at x=T � 0:56 and x=T � 0:29. These
values are close to the bin width, so we cannot resolve whether PðxÞ has a maximum at x ¼ 0 or at a non-zero
x within the first bin.

Fig. 2(b) shows the PDF for the year 1994–1995 with a narrow bin width Dx ¼ 1 k$, which corresponds to
Dx=T � 0:05. This PDF cannot be fitted by any of the three distributions, because it has a very sharp and
narrow peak at the low income 7.3 k$, which is way below the average income of 19.6 k$ for this year. This
peak is present for all years, and its position is reported in the last column of Table 1. The peak is so sharp and
narrow that it cannot be attributed to the broad maxima of the log-normal or gamma PDFs. We speculate
that this peak occurs at the threshold income of some sort of government policy, such as social welfare,
minimal wage, or tax exemption. Comparing the empirical PDF with the exponential curve, shown by the
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Fig. 2. The PDF of income distribution shown with coarse-grained (a) and high (b) resolutions. The lines show fits to different theoretical

functions in Eq. (1).
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solid line, we infer that the probability density above and below the peak is transferred to the peak, thus
creating anomalously high population at the special income.

We also studied how often different income values occur in the data sets. The most frequently reported
incomes for different years are always round numbers, such as 15 k$, 20 k$, 25 k$, etc. This effect can be seen
in the periodically spaced spikes in Fig. 2(b). It reflects either the design of the survey questionnaires, or the
habit of people for rounding their incomes in reporting. In addition to the round numbers, we also find the
income corresponding to the peak position among the five most frequently reported incomes. This income,
shown in the last column in Table 1, is not round and changes from year to year, but sometimes stays the
same. This again suggests that the sharp peak in Fig. 2(b) is the result of a government-imposed policy and
cannot be explained by statistical physics arguments.

By definition, PðxÞ is the slope of CðxÞ with the opposite sign. Fig. 1 clearly shows that the slope of CðxÞ at
x ¼ 0 is not zero, so Pðx ¼ 0Þa0. Fig. 2(b) also shows that the probability density at zero income is not zero.
In fact, Pðx ¼ 0Þ is higher than PðxÞ for all other x, except in the narrow peak. The non-vanishing Pðx ¼ 0Þ is a
strong evidence against the log-normal, gamma, and similar distributions, but is qualitatively consistent with
the exponential function. However, there is also substantial population with zero and negative income, which
is not described by any of these theories.

4. Discussion and conclusions

All three functions in Eq. (1) are the limiting cases of the generalized beta distribution of the second kind
(GB2), which is also discussed in econometric literature on income distribution [16]. GB2 has four fitting
parameters, and distributions with even more fitting parameters are considered in literature [16]. Generally,
functions with more parameters are expected to fit the data better. However, we do not think that increasing the
number of free parameters gives a better insight into the problem. We think that a useful description of the data
is the one that has the minimal number of parameters, yet reasonably (but not necessarily perfectly) agrees with
the data. From this point of view, the exponential function has the advantage of having only one parameter T

over the log-normal, gamma, and other distributions with more parameters. Fig. 1(a) shows that logC vs. x is
approximately a straight line for about 98% of population, although small systematic deviations do exist. The
log-normal and gamma distributions do not improve the fit significantly, despite having more parameters, and
actually mimic the exponential function. Thus we conclude that the exponential function is the best choice.

The analysis of PDF shows that the probability density at zero income is clearly not zero, which contradicts
the log-normal and gamma distributions, but is consistent with the exponential one, although the value of
Pðx ¼ 0Þ is somewhat lower than expected. The coarse-grained PðxÞ is monotonous and consistent with the
exponential distribution. The high resolution PDF shows a very sharp and narrow peak at low incomes,
which, we believe, results from redistribution of probability density near the income threshold of a
government policy. Technically, none of the three functions in Eq. (1) can fit the complicated, three-peak PDF
shown in Fig. 2. However, statistical physics approaches are intended to capture only the baseline of the
distribution, not its fine features. Moreover, the deviation of the actual PDF from the theoretical exponential
curve can be taken as a measure of the impact of government policies on income redistribution.
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