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Abstract

We study the probability distribution of stock returns at mesoscopic time lags (return

horizons) ranging from about an hour to about a month. While at shorter microscopic time

lags the distribution has power-law tails, for mesoscopic times the bulk of the distribution

(more than 99% of the probability) follows an exponential law. The slope of the exponential

function is determined by the variance of returns, which increases proportionally to the time

lag. At longer times, the exponential law continuously evolves into Gaussian distribution. The

exponential-to-Gaussian crossover is well described by the analytical solution of the Heston

model with stochastic volatility.
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1. Introduction

The empirical probability distribution functions (EDFs) for different assets have
been extensively studied by the econophysics community in recent years [1–10].
Stock and stock-index returns have received special attention. We focus here on the
EDFs of the returns of individual large American companies from 1993 to 1999, a
period without major market disturbances. By ‘return’ we always mean ‘log-return’,
the difference of the logarithms of prices at two times separated by a time lag t.
The time lag t is an important parameter: the EDFs evolve with this parameter. At

micro lags (typically shorter than 1 h), effects such as the discreteness of prices and
transaction times, correlations between successive transactions, and fluctuations in
trading rates become important. Power-law tails of EDFs in this regime have been
much discussed in the literature before [2,3]. At ‘meso’ time lags (typically from an
hour to a month), continuum approximations can be made, and some sort of
diffusion process is plausible, eventually leading to a normal Gaussian distribution.
On the other hand, at ‘macro’ time lags, the changes in the mean market drifts and
macroeconomic ‘convection’ effects can become important, so simple results are less
likely to be obtained. The boundaries between these domains to an extent depend on
the stock, the market where it is traded, and the epoch. The micro–meso boundary
can be defined as the time lag above which power-law tails constitute a very small
part of the EDF. The meso–macro boundary is more tentative, since statistical data
at long time lags become sparse.
The first result is that we extend to meso time lags a stylized fact known since the

19th century [11] (quoted in Ref. [12]): with a careful definition of time lag t, the
variance of returns is proportional to t.
The second result is that log-linear plots of the EDFs show prominent straight-line

(tent-shape) character, i.e., the bulk (about 99%) of the probability distribution of
log-return follows an exponential law. The exponential law applies to the central
part of EDFs, i.e., not too big log-returns. For the far tails of EDFs, usually
associated with power laws at micro time lags, we do not have enough statistically
reliable data points at meso lags to make a definite conclusion. Exponential
distributions have been reported for some world markets [4–10] and briefly
mentioned in the book [1, see Fig. 2.12]. However, the exponential law has not yet
achieved the status of a stylized fact. Perhaps this is because influential work [2,3] has
been interpreted as finding that the individual returns of all the major US stocks for
micro to macro time lags have the same power-law EDFs, if they are rescaled by the
volatility.
The Heston model is a plausible diffusion model with stochastic volatility, which

reproduces the timelag-variance proportionality and the crossover from exponential
distribution to Gaussian. This model was first introduced by Heston, who studied
option prices [13]. Later Drăgulescu and Yakovenko (DY) derived a convenient
closed-form expression for the probability distribution of returns in this model and
applied it to stock indexes from 1 day to 1 year [4]. The third result is that the DY
formula with three lag-independent parameters reasonably fits the time evolution of
EDFs at meso lags.
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2. Probability distribution of log-returns in the Heston model

In this section, the Heston model [13] and the DY formula [4] are briefly
summarized. The price St of a model stock obeys the stochastic differential equation
of multiplicative Brownian motion: dSt ¼ mSt dt þ

ffiffiffiffi
vt

p
St dW

ð1Þ
t . Here the subscript t

indicates time dependence, m is the drift parameter, W
ð1Þ
t is a standard random

Wiener process, and vt is the fluctuating time-dependent variance. The detrended
log-return is defined as xt ¼ lnðSt=S0Þ � mt, although detrending is a minor
correction at meso lags. In the Heston model, the variance vt obeys the mean-
reverting stochastic differential equation:

dvt ¼ �gðvt � yÞdt þ k
ffiffiffiffi
vt

p
dW

ð2Þ
t : ð1Þ

Here y is the long-time mean of v, g is the rate of relaxation to this mean, and k is the
variance noise. We take the Wiener processes W

ð1;2Þ
t to be uncorrelated.

The DY formula [4] for the probability density function (PDF) PtðxÞ is

PtðxÞ ¼

Z þ1

�1

dk

2p
eikxþF ~tðkÞ; F ~tðkÞ ¼

a~t
2
� a ln cosh

O~t

2
þ

O2 þ 1
2O

sinh
O~t

2

� �
; ð2Þ

~t ¼ gt; a ¼ 2gy=k2; O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkk=gÞ2

q
; s2t � hx2t i ¼ yt : ð3Þ

The variance s2t � hx2t i (3) of the PDF (2) increases linearly in time, while hxti ¼ 0.
The three parameters of the model are g, y and a. At short and long time lags, the
PDF (2) reduces to exponential (if a ¼ 1) and Gaussian [4]:

PtðxÞ /
expð�jxj

ffiffiffiffiffiffiffiffiffi
2=yt

p
Þ; ~t ¼ gt51 ;

expð�x2=2ytÞ; ~t ¼ gtb1 :

(
ð4Þ

In both limits, it scales with the volatility: PtðxÞ ¼ f x=
ffiffiffiffiffiffiffiffiffi
hx2t i

p� 	
¼ f ðx=

ffiffiffiffiffi
yt

p
Þ, where f

is the exponential or the Gaussian function.
3. Data analysis and discussion

We analyzed the data from Jan/1993 to Jan/2000 for 27 Dow companies, but
show results only for four large cap companies: Intel (INTC) and Microsoft
(MSFT) traded at NASDAQ, and IBM and Merck (MRK) traded at NYSE.
We use two databases, TAQ to construct the intraday returns and Yahoo database
for the interday returns. The intraday time lags were chosen at multiples of 5min,
which divide exactly the 6.5 h (390min) of the trading day. The interday returns
are as described in Refs. [4,5] for time lags from 1 day to 1 month = 20 trading
days.
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In order to connect the interday and intraday data, we have to introduce an
effective overnight time lag Tn. Without this correction, the open-to-close and close-
to-close variances would have a discontinuous jump at 1 day, as shown in the inset of
Fig. 1a. By taking the open-to-close time to be 6.5 h, and the close-to-close time to be
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Fig. 1. (a) variance hx2t i vs. time lag t. Solid lines: linear fits hx2t i ¼ yt. Inset: variances for MRK before

adjustment for the effective overnight time Tn. (b) log-linear plots of CDFs vs. x=
ffiffiffiffi
yt

p
. Straight dashed

lines �jxj
ffiffiffiffiffiffiffiffiffi
2=yt

p
are predicted by the DY formula (4) in the short-time limit. The curves are offset by a

factor of 10.
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Table 1

Fitting parameters of the Heston model with a ¼ 1 for the 1993–1999 data

g 1
h

� 	
1=g (h) y 1

year

� 
m 1

year

� 
Tn (h)

INTC 1:029 0: 58 13:04% 39:8% 2: 21
IBM 0:096 10: 25 9:63% 35:3% 2: 16
MRK 0:554 1: 48 6:57% 29:4% 1: 51
MSFT 1:284 0: 47 9:06% 48:3% 1: 25
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6.5 h + Tn, we find that variance hx
2
t i is proportional to time t, as shown in Fig. 1a.

The slope gives us the Heston parameter y in Eq. (3). Tn is about 2 h (see Table 1).
In Fig. 1b, we show the log-linear plots of the cumulative distribution functions

(CDFs) vs. normalized return x=
ffiffiffiffiffi
yt

p
. The CDFtðxÞ is defined as

R x

�1
Ptðx

0Þdx0, and
we show CDFtðxÞ for xo0 and 1� CDFtðxÞ for x40. We observe that CDFs for
different time lags t collapse on a single straight line without any further fitting (the
parameter y is taken from the fit in Fig. 1a). More than 99% of the probability in the
central part of the tent-shape distribution function is well described by the
exponential function. Moreover, the collapsed CDF curves agree with the DY
formula (4) PtðxÞ / expð�jxj

ffiffiffiffiffiffiffiffiffi
2=yt

p
Þ in the short-time limit for a ¼ 1 [4], which is

shown by the dashed lines.
Because the parameter g drops out of the asymptotic Eq. (4), it can be determined

only from the crossover regime between short and long times, which is illustrated in
Fig. 2a. We determine g by fitting the characteristic function ~PtðkÞ, a Fourier
transform of PtðxÞ with respect to x. The theoretical characteristic function of the
Heston model is ~PtðkÞ ¼ e

F ~tðkÞ (2). The empirical characteristic functions (ECFs) can
be constructed from the data series by taking the sum ~PtðkÞ ¼ Re

P
xt
expð�ikxtÞ

over all returns xt for a given t [14]. Fits of ECFs to the DY formula (2) are shown in
Fig. 2b. The parameters determined from the fits are given in Table 1.
In Fig. 3a we compare the empirical PDF PtðxÞ with the DY formula (2). The

agreement is quite good, except for the very short time lag of 5min, where the tails
are visibly fatter than exponential. In order to make a more detailed comparison, we
show the empirical CDFs (points) with the theoretical DY formula (lines) in Fig. 3b.
We see that, for micro time lags of the order of 5 min, the power-law tails are
significant. However, for meso time lags, the CDFs fall onto straight lines in the log-
linear plot, indicating exponential law. For even longer time lags, they evolve into
the Gaussian distribution in agreement with the DY formula (2) for the Heston
model. To illustrate the point further, we compare empirical and theoretical data for
several other companies in Fig. 4.
In the empirical CDF plots, we actually show the ranking plots of log-returns xt

for a given t. So, each point in the plot represents a single instance of price change.
Thus, the last one or two dozens of the points at the far tail of each plot constitute a
statistically small group and show large amount of noise. Statistically reliable
conclusions can be made only about the central part of the distribution, where the
points are dense, but not about the far tails.
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Fig. 2. (a) theoretical CDFs for the Heston model plotted vs. x=
ffiffiffiffi
yt

p
. The curves interpolate between the

short-time exponential and long-time Gaussian scalings. (b) comparison between empirical (points) and

the DY theoretical (curves) characteristic functions ~PtðkÞ.

A.C. Silva et al. / Physica A 344 (2004) 227–235232
4. Conclusions

We have shown that in the mesoscopic range of time lags, the probability
distribution of financial returns interpolates between exponential and Gaussian
law. The time range where the distribution is exponential depends on a parti-
cular company, but it is typically between an hour and few days. Similar
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Fig. 3. Comparison between the 1993–1999 Intel data (points) and the DY formula (2) (curves) for PDF

(a) and CDF (b).
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exponential distributions have been reported for the Indian [6], Japanese [7],
German [8], and Brazilian markets [9,10], as well as for the US market [4,5]
(see also Fig. 2.12 in Ref. [1]). The DY formula [4] for the Heston model [13]
captures the main features of the probability distribution of returns from
an hour to a month with a single set of parameters. We believe that econo-
physicists should be aware of the presence of the exponential distribution and
recognize it as another ‘‘stylized fact’’ in the set of analytical tools for financial
data analysis.
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Fig. 4. Comparison between empirical data (symbols) and the DY formula (2) (lines) for CDF (left panels)

and characteristic function (right panels).
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