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Abstract

We present an empirical study of the subordination hypothesis for a stochastic time series of a stock price. The

fluctuating rate of trading is identified with the stochastic variance of the stock price, as in the continuous-time random

walk (CTRW) framework. The probability distribution of the stock price changes (log-returns) for a given number of

trades N is found to be approximately Gaussian. The probability distribution of N for a given time interval Dt is non-

Poissonian and has an exponential tail for large N and a sharp cutoff for small N. Combining these two distributions

produces a non-trivial distribution of log-returns for a given time interval Dt, which has exponential tails and a Gaussian

central part, in agreement with empirical observations.

r 2007 Elsevier B.V. All rights reserved.
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1. Stochastic volatility, subordination, and fluctuations in the number of trades

The stock price St is a stochastic series in time t. It is commonly characterized by the probability
distribution PDtðxÞ of detrended log-returns x ¼ lnðSt2

=St1
Þ � mDt, where the time interval Dt ¼ t2 � t1 is

called the time lag or time horizon, and m is the average growth rate. For a simple multiplicative (geometric)
random walk, the probability distribution is Gaussian: PDtðxÞ / expð�x2=2vDtÞ, where v ¼ s2 is the variance,
and s is the volatility. However, the empirically observed probability distribution of log-returns is not
Gaussian. It is well known that the distribution has power-law tails for large x [1,2]. However, the distribution
is also non-Gaussian for small and moderate x, where it follows the tent-shaped exponential (also called
double-exponential) Laplace law: PDtðxÞ / expð�cjxj=

ffiffiffiffiffi
Dt
p
Þ, as emphasized in Ref. [3]. The exponential

distribution was found by many researchers [4–11], so it should be treated as a ubiquitous stylized fact for
financial markets [3].

In order to explain the non-Gaussian character of the distribution of returns, models with stochastic
volatility were proposed in literature [12–15]. If the variance vt changes in time, then vDt in the Gaussian
distribution should be replaced by the integrated variance VDt ¼

R t2
t1

vt dt. If the variance is stochastic, then we
e front matter r 2007 Elsevier B.V. All rights reserved.
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should average over the probability distribution QDtðV Þ of the integrated variance V for the time interval Dt:

PDtðxÞ ¼

Z 1
0

dV
e�x2=2Vffiffiffiffiffiffiffiffiffi

2pV
p QDtðV Þ. (1)

The representation (1) is called the subordination [16,17]. In this approach, the non-Gaussian character of
PDtðxÞ results from a non-trivial distribution QDtðV Þ.

In the models with stochastic volatility, the variables v or V are treated as hidden stochastic variables. One
may try to identify these phenomenological variables with some empirically observable and measurable
components of the financial data. It was argued [18–20] that the integrated variance VDt may correspond to
the number of trades (transactions) NDt during the time interval Dt: VDt ¼ xNDt, where x is a coefficient [21].
Every transaction may change the price up or down, so the probability distribution PN ðxÞ after N trades would
be Gaussian:

PN ðxÞ ¼
e�x2=2xNffiffiffiffiffiffiffiffiffiffiffiffi
2pxN
p . (2)

Then, the subordinated representation (1) becomes

PDtðxÞ ¼

Z 1
0

dN
e�x2=2xNffiffiffiffiffiffiffiffiffiffiffiffi
2pxN
p KDtðNÞ, (3)

where KDtðNÞ is the probability to have N trades during the time interval Dt. (We assume that N is large and
use integration, rather than summation, over N). In this approach, the stochastic variance v reflects the
fluctuating rate of trading in the market.

Performing the Fourier transform of (3) with respect to x, we find that the characteristic function ~PDtðkxÞ is
directly related to the Laplace transform ~KDtðkN Þ of KDtðNÞ with respect to N, where kx and kN are the Fourier
and Laplace variables conjugated to x and N:

~PDtðkxÞ ¼

Z 1
0

dN e�Nxk2x=2KDtðNÞ ¼ ~KDtðxk2
x=2Þ. (4)

In this paper, we study whether the subordinated representation (3) agrees with financial data. First, we
verify whether PNðxÞ is Gaussian, as suggested by Eq. (2). Second, we check whether empirical data satisfy
Eq. (4). Third, we obtain KDtðNÞ empirically and, finally, discuss whether PDtðxÞ constructed from Eq. (3)
agrees with the data. Refs. [19,20] have already presented evidence in favor of the first conjecture; however, the
other questions were not studied systematically in literature.

The subordination was also studied in physics literature as the continuous-time random walk (CTRW)
[22,23]. Refs. [24–26] focused on the probability distribution of the waiting time Dt between two consecutive
transactions (DN ¼ 1). Our approach is to study the distribution function KDtðNÞ, which gives complementary
information and can be examined for a wide variety of time lags. In Ref. [27], this function was studied for
some Russian stocks.

We use the TAQ database from NYSE [28], which records every transaction in the market (tick-by-tick
data). We focus on the Intel stock (INTC), because it is highly traded, with the average number of transactions
per day about 2:5� 104. Here we present the data for the period 1 January–31 December 1999, but we found
similar results for 1997 as well [29]. Because of difficulties in dealing with overnight price changes, we limit our
consideration to the intraday data. Since Dt is relatively short here, the term mDt is small and can be neglected.

2. Probability distribution of log-returns x after N trades

It follows from Eq. (2) that hx2iN ¼ xN, where hx2iN is the second moment of x after N trades. It is also
natural to expect that the average number of trades hNiDt during the time interval Dt is proportional to Dt with
some coefficient Z. Thus, we expect

hx2iN ¼ xN ; hNiDt ¼ ZDt; hx2iDt ¼ yDt; y ¼ xZ. (5)
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Notice that the coefficient y ¼ hvi is the mean variance. Figs. 1 and 2 show that the relations (5) are indeed
satisfied. We extract the values of the coefficients from the slopes of these plots: x ¼ 2:4� 10�8 per one trade,
Z ¼ 3:8� 103 trades=h, and y ¼ 9:5� 10�5 h�1. The relation y ¼ xZ is satisfied only approximately, but within
the measurement accuracy.

In Figs. 3 and 4, we examine the empirical probability distribution PNðxÞ of log-returns x after N trades. In
Fig. 3, the cumulative distribution functions CN ðxÞ ¼

R x

�1
dx0PN ðx

0Þ for xo0 and 1� CNðxÞ for xo0 are
compared with the Gaussian distribution shown by the dashed line. The log-return x is normalized by
sN ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hx2iN

p
. The empirical distributions PN ðxÞ for different N agree with the Gaussian in the central part,

but there are deviations in the tails, as expected for large jxj. Similar results were found in Fig. 6 of Ref. [30].
Fig. 4 shows the Q2Q plot similar to the one constructed in Ref. [19]. This is a parametric plot, where the

vertical axis shows the empirical CN ðx=sN Þ, and the horizontal axis shows the cumulative Gaussian
distribution of x=s, whereas the parameter x changes from �1 to þ1. The plots for different N are all
close to the diagonal, which indicates agreement between the empirical and the Gaussian distribution
functions. Fig. 4 emphasizes the central part of the distribution, whereas Fig. 3 emphasizes the tails. Overall,
we conclude the empirical distribution PNðxÞ is reasonably close to the Gaussian in the central part, so Eq. (2)
is approximately satisfied.
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Fig. 1. The variance of log-returns hx2iN after N trades plotted vs. N.
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Fig. 2. The variance of log-returns hx2iDt (upper points, left scale) and the average number of trades hNiDt (lower points, right scale) vs.

the time lag Dt. The solid lines of slope 1 represent the proportionality relations (5).
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Fig. 3. Cumulative distribution CN ðx=sN Þ of normalized log-returns after N trades, where s2N ¼ hx
2iN , compared with the Gaussian

distribution (dashed curve). N=Z is the typical time interval between N trades.
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Fig. 4. The parametric Q2Q plot of the empirical cumulative distribution CN ðx=sN Þ of normalized log-returns vs. the Gaussian

distribution for the parameter x from �1 to þ1.
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When the time lag approaches 1 day, the number of data points become too small to construct reliable
probability densities, so we cannot verify the Gaussian hypothesis beyond the intraday data. When the time
lag is too short, and the corresponding N is small, the log-returns are discrete and cannot be described by a
continuous function, such as Gaussian. We found that the distribution of x becomes reasonably smooth only
after a thousand of trades [29]. Discreteness of the distribution for small N can be seen in Fig. 11 of Ref. [31].

3. The characteristic function for log-returns and the Laplace transform for the number of trades

The subordination hypothesis (3) can be examined further by checking the relation (4) between the Fourier
transform ~PDtðkxÞ for log-returns and the Laplace transform ~KDtðkNÞ for the number of trades. These
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functions can be directly constructed from the data. As shown in Ref. [3], ~PDtðkxÞ � ð1=nÞ
Pn

j¼1 e
ikxxj and

~KDtðkN Þ � ð1=mÞ
Pm

l¼1 e
�kN Nl , where the sums are taken over all occurrences of the log-returns xj and the

numbers of trades Nl during a time interval Dt in a dataset. Because the frequency of appearances of a given xj

or Nl is proportional to the corresponding probability density, these sums approximate the integral definitions
~PDtðkxÞ ¼

Rþ1
�1

dx eikxxPDtðxÞ and ~KDtðkNÞ ¼
R1
0

dN e�kN NKDtðNÞ.

In Fig. 5, we show the parametric plot of ~PDtðkxÞ vs. ~KDtðxk2
x=2Þ. The vertical axis shows ~PDtðkxÞ, and the

horizontal axis shows ~KDtðxk2
x=2Þ, whereas the parameter kx changes from �1 to þ1. The upper right corner

ð1; 1Þ corresponds to kx ¼ 0, and the lower left corner ð0; 0Þ corresponds to large jkxj. The parameter x used in
Fig. 5 is extracted from the slope of hx2iN vs. N in Fig. 1. The relations

d2 ~PDtðkxÞ

dk2
x

�����
kx¼0

¼ �hx2iDt;
d ~KDtðkNÞ

dkN

����
kN¼0

¼ �hNiDt (6)

and Eq. (5) ensure that the slope of the parametric plot near the point ð1; 1Þ corresponds to the diagonal.
Overall, the plots for different Dt in Fig. 5 are close to the diagonal, but deviate in the lower corner for large
jkxj, which indicates that the subordination relation (4) is satisfied only approximately. Notice that no
assumptions about the functional form of KDtðNÞ are made in Eq. (4). The only assumption is that PN ðxÞ is
Gaussian (2), and the distributions of x and N are uncorrelated, so they can be combined in Eq. (3).
4. Probability distribution of the number of trades N during the time interval Dt

Fig. 6 shows the log-linear plot of the empirically constructed cumulative distribution CDtðNÞ ¼R1
N

KDtðN
0ÞdN 0 for the number of trades N during the time interval Dt. The straight lines are eye guides,

which indicate that the probability distributions KDtðNÞ are exponential for large N. The slopes of the lines are
related to hNiDt ¼ ZDt, so we can approximate KDtðNÞ / expð�N=ZDtÞ for large N. For small N, Fig. 6 shows
that CDtðNÞ is flat and KDtðNÞ is suppressed, so that KDtðN ¼ 0Þ ¼ 0. It is indeed very improbable to have no
trades at all for an extended time period Dt. For long enough Dt, we expect that KDtðNÞ would become a
Gaussian function of N centered at hNiDt ¼ ZDt. However, this regime has not been achieved yet for the time
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lags Dt shown in Fig. 6. For short Dt, we also found that hN2iDt / hNi
2
Dt with a coefficient somewhat smaller

than 2, as expected for an approximately exponential distribution.
Notice that the exponential behavior of the empirical KDtðNÞ shown in Fig. 6 is inconsistent with the

Poisson distribution KPoisson
Dt ðNÞ ¼ e�ZDtðZDtÞN=N! expected for trades occurring randomly and independently

at the average rate Z. It was suggested in literature that KDtðNÞ may be approximated by the log-normal or
gamma distributions. We do not attempt to discriminate between the alternative hypotheses here, but
sometimes these functions may look alike [32]. A qualitatively similar distribution KDtðNÞ was found for some
Russian stocks in Ref. [27].
5. Probability distribution of log-returns x after the time interval Dt

Having established that PNðxÞ is approximately Gaussian (2), and KDtðNÞ is approximately exponential for
short Dt, we can obtain PDtðxÞ from Eq. (3). Substituting these expressions into Eq. (3), we get

PDtðxÞ �

Z 1
0

dN
e�x2=2xNffiffiffiffiffiffiffiffiffiffiffiffi
2pxN
p

e�N=ZDt

ZDt
¼

e�jxj
ffiffiffiffiffiffiffiffiffi
2=yDt
p

ffiffiffiffiffiffiffiffiffiffi
2yDt
p . (7)

Eq. (7) shows that the exponential distribution of the number of trades N results in the exponential (Laplace)
distribution of log-returns x. This can be understood as follows. The integral (7) can be taken exactly, but one
can also evaluate it approximately by integrating around the optimal value of N� ¼ jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZDt=2x

p
that

minimizes the negative expression in the exponent of Eq. (7) and maximizes the integrand. We see that the
probability to have a given log-return x is controlled by the probability to have the optimal number of trades
N�ðxÞ. Thus, the distribution PDtðxÞ has the fatter (exponential) tails than Gaussian, because the probability to
have a large x is enhanced by fluctuations with large N.

On the other hand, for very small x, the optimal value N� becomes limited by the cutoff in KDtðNÞ for small
N. At this point, the optimal value N� stops depending on x, so PDtðxÞ becomes Gaussian. Thus, we expect to
see the Gaussian behavior in PDtðxÞ for small jxj and the exponential behavior for medium and large jxj. Fig. 7
shows a log-linear plot of the empirical probability density PDtðxÞ. In agreement with the qualitative analysis
presented above, we observe that the data points follow the parabolic (Gaussian) curve for small jxj and fall
on the straight (exponential) lines for large jxj. The range of x occupied by the Gaussian expands when the
time lag Dt increases, because the cutoff in KDtðNÞ for small N increases with the increase of Dt, as shown in
Fig. 6. We conclude that the subordination hypothesis (3) is qualitatively valid, and particularly, it explains the
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exponential distribution PDtðxÞ for x as a result of the exponential distribution KDtðNÞ for the number of
trades N.

The solid lines in Fig. 7 show fits of the data to the Heston model. The Heston model [14] is a model with
stochastic volatility, which has the advantage of being exactly solvable. A closed-form solution for PDtðxÞ was
obtained in Ref. [33], and Fig. 7 shows fits of the data to the formula derived there. Refs. [3,33] pointed out
that PDtðxÞ in the Heston model has the exponential tails and Gaussian center, in qualitative and quantitative
agreement with the empirical distribution of log-returns. Given the verification of the subordination
hypothesis presented in this paper, one may ask whether the Heston model describes the probability
distribution KDtðNÞ for the number of trades N. A detailed study of this question will be presented in a
separate paper [34].

We also would like to point out that Eq. (7) represents a special case of the variance-gamma distribution
introduced by Madan and Seneta [35]. The Heston model solution [33] reduces to the variance-gamma
distribution in the limit of short Dt, see Eqs. (48) and (49) in Ref. [33].
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