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1. Equation of motion for a stretched string: In class we derived the equation of
motion for a stretched string by applying Newton’s law to each bit of string. This is
also called the one-dimensional wave equation. [4+3+3 +(3+3+4)=20 pts.]

Solution:

(a) The dimensions are tension [τ ] = MLT−2, linear mass density [ρ] = ML−1 and
wavelength [λ] = L. No dimensionless combination exists, since only the tension
involves time, so it must be omitted from any dimensionless quantity, but then
only the mass density involves mass, so it too must be omitted, which leaves
only the wavelength, which is not dimensionless. The unique combination with
dimensions of velocity must involve the ratio τ/ρ, to cancel the M ’s. In fact
[τ/ρ] = L2T−2, so the velocity is proportional to

√
τ/ρ.

(b) If the string has fixed endpoints, then the problem depends also on the string
length l. The lowest frequency normal mode must have frequency proportional
to (

√
τ/ρ)/l.

(c) Using the chain rule, ∂tf(x − vt) = −vf ′(x − vt) = −v∂xf(x − vt), where the
notation ∂t denotes ∂/∂t, and f ′ indicates derivative of f with respect to its
argument. Taking another derivative with respect to t and using ∂t∂x = ∂x∂t
yields ∂2t f = (−v)2∂2xf = v2∂2xf .

(d) (i) Inserting y(x, t) = sin(ωt+ ϕ)f(x) in the wave equation yields

f ′′(x) = −(ω/v)2f(x),

where the prime denotes derivative with respect to x. (ii) Being a second or-
der equation the general solution has two free parameters. You could find this
by assuming an exponential for eαx and solving for α (there are two imaginary
solutions) and then requiring that the solution be real. However, you hopefully
remember that the functions that are proportional to the negative of their sec-
ond derivative are sin and cos. We can write the general solution as is f(x) =
A sin(ωx/v+δ), where A and δ are real constants. Then y(x, t) = sin(ωt+ϕ)f(x).
(iii) The boundary condition y(0, t) = 0 implies sin δ = 0, so δ = 0, π. The latter
is the same as the former together with a sign flip of A. The boundary condi-
tion y(`, t) = 0 then implies sin(ω`/v) = 0, i.e. ω`/v = nπ for any integer n.
That is, the frequency must have one of the discrete values ωn = nπv/`, and the
corresponding mode function is fn(x) = An sin(nπx/`). The lowest frequency is
ω0 = πv/`. (Since v =

√
τ/ρ, this agrees with the dimensional analysis. The

dimensionless coefficient is π.)



2. Convergence of improper integrals

(a) Show that
∫∞
1 dt tn is finite if and only if n < −1.

(b) Show that
∫∞
0 dt(a+ bt)n, with a, b > 0, is finite if and only if n < −1.

Be careful to treat the n = −1 cases properly. [5 pts.]

Solution: If n ≥ 0 the integrals both obviously diverge: the integrand is constant
(n = 0) or monotonically increasing (n > 0) and the range is infinite. What about
negative n? Let’s just do the integrals. Replacing the upper limit with t0, the first
integral yields (n+ 1)−1(tn+1

0 − 1), as long as n 6= −1. If n = −1 the integral is ln t0.
The result is therefore finite as t0 → ∞ if and only if n + 1 < 0, i.e. n < −1. The
argument for the second integral is identical.

3. Consider a particle of mass m in one dimension with a positive velocity v, acted on
by a force that depends on the velocity as −bvn, where b is a positive constant and n
is a positive dimensionless number. This force acts to slow the particle down.

(a) Use dimensional analysis to find an expression for how (i) the time for the par-
ticle to come to rest, and (ii) the distance it travels before coming to rest, can
depend on the initial velocity v0, together with m, b, and n. [5 pts.]

Solution: F = ma becomes here −bvn = mdv/dt. Solving for dt yields
dt = −(m/b)v−ndv. Therefore to make a time to stop tstop from the available
quantities we can write

tstop = f(n)(m/b)v1−n0 , (1)

where f(n) is an arbitrary function of n. Moreover, this is the only way to do
it, since it can be checked that there is no dimensionless combination of m, b, v0.
Multiplying this by v0 we obtain a quantity with dimensions of length,

dstop = g(n)(m/b)v2−n0 , (2)

where the dimensionless function g(n) could of course be different from f(n).

These expressions make good sense: it takes longer to stop with more mass m or
a smaller drag coefficient b or a greater intitial velocity v0. . . wait a minute! Only
if n < 1 does greater velocity imply greater tstop in (1). This tells us something
important: tstop must be infinite if n ≥ 1. Otherwise dimensional analysis would
tell us the absurd result that it takes les time to stop when the initial velocity is
higher. Similarly dstop must be infinite if n ≥ 2.

(b) By integrating Newton’s law, determine for which values of n the particle comes
to rest in a finite time, and determine that time. Compare with part 3a. [5 pts.]

Solution: Newton’s law gives v−ndv = −(b/m)dt, and integrating both sides
yields: ∫ vf

v0
v−n dv = −(b/m)

∫ tf

0
dt. (3)

If n = 1 we find
ln(vf/v0) = −(b/m)tf . (4)



The left hand side goes to −∞ as vf goes to 0, so tf also goes to∞, which means
it takes an infinite amount of time for v to reach zero. If n 6= 1 then we find

v−n+1
f − v−n+1

0 = −(−n+ 1)(b/m)tf . (5)

If n > 1 again the left hand side diverges as vf → 0, so tf →∞. If n < 1 the left
hand side is finite for vf = 0, and the time to stop is tstop = (1−n)−1(m/b)v1−n0 .
This agrees with our dimensional analysis (2), with f(n) = (1 − n)−1, pro-
vided n < 1. So what went wrong with the dimensional analysis when n ≥ 1?
Nothing—it’s just that the function f(n) is infinite in that case! That is, the
dimensional analysis alone could not tell us whether the dimensionless coefficient
is finite or infinite.

(c) Determine for which values of n the particle travels a finite total distance before
coming to rest (whether or not it actually stops in a finite time). Find an ex-
pression for that distance and compare with your result from part 3a. [5 pts.]

Solution: If the time to stop is finite, then clearly the particle goes a finite
distance before stopping. This is the case for n < 1. But perhaps the distance
can be finite even if the time is infinite, provided it slows down quickly enough.
The distance is related to the time and velocity by dx = vdt. When n = 1 (4)
yields v(t) = v0e

−bt/m, so the distance traveled is

∆x =

∫ ∞
0

v0e
−bt/m dt = mv0/b (6)

which is finite. When n 6= 1 (5) yields

∆x =

∫ ∞
0

v dt (7)

=

∫ ∞
0

(v−n+1
0 + (n− 1)(b/m)t)−1/(n−1) dt. (8)

The integral converges at the upper limit provided the integrand falls off faster
than t−1, as shown in problem 2. That is it converges provided n < 2. So, for
n ≥ 2 the particle goes infinitely far in an infinite time, while for 1 ≤ n < 2
the particle only goes a finite total distance, but it takes an infinite time to
come to rest, and for n < 1 the particle stops after a finite time. To evaluate
the distance (7), let’s choose units with m = b = v0 = 1. The integral then
yields −1/(n− 2). In arbitrary units this must be the multiplied by the unique
quantity with dimensions of length that can be formed from m, b, v0, that is we
get ∆x = mv2−n0 /b(2−n). For n = 1 this agrees with the result obtained in (6).
For n = 0 it is equivalent to b∆x = mv20/2, which equates the work done by the
constant force b to the change in kinetic energy.


