Homework 4

Ted Jacobson and William D. Linch III

March 28, 2005
1.a The null generators are radial and are specified by $r(\lambda)$ and $t(\lambda)$, with fixed angles. As they form a null geodesic congruence, they extremize the functional $I=\frac{1}{2} \int\left(\dot{t}^{2}-\dot{r}^{2}\right)$. (The angular part is trivially stationary since it is quadratic in the derivatives $\dot{\theta}=\dot{\phi}=0$.) The Euler-Lagrange equations for r following from this functional are $0=\ddot{r}$. Hence, $r=a \lambda+b$ is an affine parameter for the null generators.
1.b The area of the spherical surfaces $d r=0$ of radius r are Area $=4 \pi r^{2}$. Then, on the past light cone ${ }^{1}$

$$
\begin{align*}
\theta_{0} & =\left.\frac{\frac{d \text { Area }}{d r}}{\text { Area }}\right|_{r=r_{0}} \\
& =\frac{-2 \cdot 4 \pi r_{0}}{4 \pi r_{0}^{2}} \\
& =-\frac{2}{r_{0}} . \tag{1}
\end{align*}
$$

1.c According to the focusing theorem, $\theta \rightarrow-\infty$ at or before an affine parameter time $\lambda_{0}=2\left|\theta_{0}\right|^{-1}$. Solving (1) gives $r_{0}=-\frac{2}{\theta_{0}}=2\left|\theta_{0}\right|^{-1}$. On the cone $0=t^{2}-r^{2}$ this corresponds to a time $\lambda_{0}=t_{0}=r_{0}$ in agreement with the theorem.
2.a By the spherical symmetry of the metric, initially radial geodesics remain radial. Furthermore, the square of the 4 -velocity is conserved along a geodesic. Therefore, if the geodesic is radial and null to begin with, it remains radial and null. This is a rigorous argument but perhaps it is helpful to do it explicitly (if not, skip to 2.b): Geodesics extremize the functional $I=\frac{1}{2} \int\left(f \dot{t}^{2}-g \dot{r}^{2}-r^{2} \dot{\Omega}^{2}\right) d \lambda$, id est they satisfy the equations

$$
\begin{aligned}
\frac{d}{d \lambda}(f \dot{t}) & =0 \\
f^{\prime} \dot{t}^{2}-g^{\prime} \dot{r}^{2}+2 \frac{d}{d \lambda}(g \dot{r})-2 r \dot{\Omega}^{2} & =0
\end{aligned}
$$

[^0]\[

$$
\begin{equation*}
r^{2} \ddot{\Omega}=0 \tag{2}
\end{equation*}
$$

\]

For initially radial geodesics $\dot{\Omega}=0$ the third equation implies that they stay radial so we can ignore the Ω-terms. The first equation implies that $\dot{t}=c / f$ for some constant c. On the other hand, radial light $\left(d s^{2}=0\right)$ rays solve $0=f d t^{2}-g d r^{2}$, id est

$$
\begin{equation*}
\frac{d r}{d t}= \pm \sqrt{\frac{f}{g}} \tag{3}
\end{equation*}
$$

Therefore, $\dot{r}= \pm \sqrt{f / g} \dot{t}= \pm c / \sqrt{f g}$ and one can differentiate this again to obtain

$$
\begin{equation*}
\ddot{r}=-\frac{c^{2}}{2}\left(\frac{f^{\prime}}{f^{2} g}+\frac{g \prime}{f g^{2}}\right) . \tag{4}
\end{equation*}
$$

If these formulæ solve the second equation in (2), we will have shown that radial null rays are always geodesics. Indeed, substitution yields

$$
\begin{equation*}
f^{\prime} \frac{c^{2}}{f^{2}}-g^{\prime} \frac{c^{2}}{f g}+2 g^{\prime} \frac{c^{2}}{f g}+2 g\left\{-\frac{c^{2}}{2}\left(\frac{f^{\prime}}{f^{2} g}+\frac{g \prime}{f g^{2}}\right)\right\} \equiv 0 \tag{5}
\end{equation*}
$$

2.b

The equation in the text after (3) shows that \dot{r} is constant-i.e. r is linearly related to the affine parameter λ and is thus affine itself-iff $f g=$ constant.
2.c By symmetry $\sigma=0=\omega$ on the radial geodesic congruences so that the Raychaudhuri equation reduces to $\dot{\theta}=-\frac{1}{2} \theta^{2}+R_{a b} k^{a} k^{b}$. On the other hand $\theta=\frac{1}{\text { Area }} \frac{d}{d \lambda}$ Area $=2 \dot{r} / r$ which gives $\dot{\theta}=2 \ddot{r} / r-\frac{1}{2} \theta^{2}$. Therefore, $2 \ddot{r} / r=R_{a b} k^{a} k^{b}$ so $\ddot{r}=0 \Leftrightarrow R_{a b} k^{a} k^{b}=0$.

2.d

(i) The cosmological constant shifts $R_{a b}$ by a term proportional to the metric and hence contributes a term in the Raychaudhuri equation proportional to $g_{a b} k^{a} k^{b}=0$.
(ii) A radial electric field $(\vec{E})^{r}=F_{0 r}$. The stress-energy is given by $T_{a b} \propto F_{a c} F_{b}{ }^{c}-\frac{1}{4} g_{a b} F^{2}$. Its non-trace part reduces to $T_{a b} \propto F_{a 0} F_{b 0}-F_{a r} F_{b r}$. Since k is radial and null, we can normalize it to $k=(1,1,0,0)$ in Schwarzschild-like coordinates. Then $T_{a b} k^{a} k^{b}=$ $F_{r 0}^{2}-F_{0 r}^{2} \equiv 0$.
Alternatively, we observe that the 1-form $F_{a b} k^{b}$ has no angular components and is orthogonal to k^{a} by the anti-symmetry of F. It follows that it is proportional to k_{a} : There is some constant c such that $F_{a b} k^{b}=c k_{a}$. Then $T_{a b} k^{a} k^{b} \propto c^{2} k_{a} k^{a}-\frac{1}{4} k^{2} F^{2}=0$.

For the radial magnetic field $(\vec{B})^{r}=F_{\theta \phi}$ we observe that $T_{a b} k^{a} k^{b}$ must vanish because k has no non-radial parts k^{θ} and/or k^{ϕ}.
(iii) This time the non-trace part of the stress tensor is $T_{a b}=\partial_{a} \varphi \partial_{b} \varphi$ and $T_{a b} k^{a} k^{b}=(k \cdot \partial \varphi)^{2}$ which does not vanish for generic φ.
3.a Let $\hat{x}:=(d \lambda / d v) x$ for $x=\theta, \sigma, k$. Then

$$
\begin{align*}
\frac{d \hat{\theta}}{d v} & =\frac{d \lambda}{d v} \frac{d \theta}{d v}+\frac{d^{2} \lambda}{d v^{2}} \theta \\
& =\left(\frac{d \lambda}{d v}\right)^{2} \frac{d \theta}{d \lambda}+\frac{d^{2} \lambda}{d v^{2}}\left(\frac{d \lambda}{d v}\right)^{-1} \hat{\theta} \\
\Rightarrow \quad\left(\frac{d \lambda}{d v}\right)^{2} \frac{d \theta}{d \lambda} & =\frac{d \hat{\theta}}{d v}-\kappa \hat{\theta} . \tag{6}
\end{align*}
$$

The Raychaudhuri equation is ${ }^{2}$

$$
\begin{equation*}
\frac{d \theta}{d \lambda}=-\frac{1}{2} \theta^{2}-\sigma^{2}-R_{a b} k^{a} k^{b} . \tag{7}
\end{equation*}
$$

Multiply this equation by $(d \lambda / d v)^{2}$ and plug in (6) to obtain

$$
\begin{equation*}
\frac{d \hat{\theta}}{d \lambda}=\kappa \hat{\theta}-\frac{1}{2} \hat{\theta}^{2}-\hat{\sigma}^{2}-R_{a b} \hat{k}^{a} \hat{k}^{b} \tag{8}
\end{equation*}
$$

3.b Starting with $\Delta A=\int_{B} \theta d^{2} A d \lambda=\int_{B} \hat{\theta} d^{2} A d v$, substituting the adiabatic solution of (8), $\hat{\theta} \approx(1 / \kappa) R_{a b} \hat{k}^{a} \hat{k}^{b}$, and using the Einstein equation, we obtain

$$
\begin{align*}
\Delta A & =\frac{8 \pi}{\kappa} \int_{B} T_{a b} \hat{k}^{a} \hat{k}^{b} d^{2} A d v \\
& =\frac{4}{T_{H}} \int_{B} T_{a b} \hat{k}^{a} \underbrace{k^{b} d^{2} A d \lambda}_{d \Sigma^{b}} \tag{9}
\end{align*}
$$

where we have used $T_{H}=\kappa / 2 \pi$. Since $k^{a} d \lambda=\xi^{a} d v$ (recall $k^{a}=(d / d \lambda)^{a}$ and we are just making a change of variables to Killing time) it follows that $\hat{k}^{a}=\xi^{a}$. Defining the "energy" flux ${ }^{3}$ across the horizon H as $\delta E_{H}=\int_{H} T_{a b} \xi^{a} d \Sigma^{b}$, we obtain the desired result

$$
\begin{equation*}
\frac{\Delta A}{4}=\frac{\delta E_{H}}{T_{H}} \tag{10}
\end{equation*}
$$

4.a Imagine pretty drawing here.
4.b In Eddington-Finkelstein coordinates the line element is

$$
\begin{equation*}
d s^{2}=\left(1-\frac{1}{r}\right) d v^{2}-2 d v d r-r^{2} d \Omega^{2} \tag{11}
\end{equation*}
$$

[^1]where the advanced time coordinate is defined as $v=t+r_{*}$ in terms of the terrapin coordinate $r_{*}=r+\log (r-1)$. We want to know the form of the out-going null rays. We take, as usual, $d \Omega=0$ and solve 11 for $d s^{2}=0$. Since we do not want the in-going null geodesic, $d v \neq 0$ and we find
\[

$$
\begin{equation*}
d v=\frac{2 d r}{1-\frac{1}{r}}=2 d r_{*} \tag{12}
\end{equation*}
$$

\]

Integrating this equation between initial and final configurations with masses M and $M+\Delta M$ gives

$$
\begin{equation*}
\frac{\Delta r}{2 M}+\log \left(\frac{r_{f}-2 M}{r_{i}-2 M}\right)=\frac{\Delta v}{2 \cdot 2 M} . \tag{13}
\end{equation*}
$$

Here we have restored the units which we had originally defined by setting $2 M=1$. Now, taking the initial radius $r_{i}=2 M(1+\epsilon)$ to be slightly larger than the Schwarzschild radius and the final radius $r_{f}=2(M+\Delta M)$ to be the radius after the second shell collapses, $\Delta r=2 \Delta M$ and the equation becomes

$$
\begin{equation*}
\frac{\Delta M}{M}+\log \left(\frac{\Delta M}{M \epsilon}\right)=\kappa\left(v_{f}-v_{i}\right) \tag{14}
\end{equation*}
$$

Finally, discarding small terms $4^{4} O\left(\frac{\Delta M}{M}\right)$ and exponentiating, we find that in the far past

$$
\begin{equation*}
\epsilon \sim a \mathrm{e}^{\kappa v_{i}} \tag{15}
\end{equation*}
$$

where $a=(\Delta M / M) \exp \left(-\kappa v_{f}\right)$. We see that as $v_{i} \rightarrow-\infty, \epsilon \rightarrow 0+$ exponentially.

[^2]
[^0]: ${ }^{1}$ The sign comes from the fact that r is decreasing on the past light cone.

[^1]: ${ }^{2}$ Ted's reference has a typo in equation (6).
 ${ }^{3}$ This quantity is really the "(energy) $-\Omega_{H}$ (angular momentum)" flux, as it concerns the part of the energy-momentum tensor projected along the horizon-generating Killing field ξ.

[^2]: ${ }^{4}$ It is not necessary to assume that these terms are small. Keeping them simply changes the coefficient a in (15).

