Homework 4

Ted Jacobson and William D. Linch III

March 28, 2005

l.a The null generators are radial and are specified by r(A) and #()\), with fixed angles. As
they form a null geodesic congruence, they extremize the functional I = § [ ({2 —#%). (The
angular part is trivially stationary since it is quadratic in the derivatives § = ¢ = 0.) The
Euler-Lagrange equations for r following from this functional are 0 = 7. Hence, r = a\ + b
is an affine parameter for the null generators.

1.b The area of the spherical surfaces dr = 0 of radius r are Area = 47wr?. Then, on the
past light coneﬂ
dArea
60 _ dr

Area r=ro
—2 - 4mrg

4rrrd
2
- - (1

To

1.c According to the focusing theorem, § — —oo at or before an affine parameter time
Ao = 2|6o|~!. Solving (1)) gives 7o = —% = 2|6y|~!. On the cone 0 = ¢* — r? this corresponds
to a time \g =ty = rg In agreement with the theorem.

2.a By the spherical symmetry of the metric, initially radial geodesics remain radial. Fur-
thermore, the square of the 4-velocity is conserved along a geodesic. Therefore, if the geodesic
is radial and null to begin with, it remains radial and null. This is a rigorous argument but
perhaps it is helpful to do it explicitly (if not, skip to 2.b): Geodesics extremize the functional

I=3] (fi2 — gr? — T2Q2> d\, id est they satisfy the equations
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!The sign comes from the fact that r is decreasing on the past light cone.
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Q= 0. (2)

For initially radial geodesics 0 = 0 the third equation implies that they stay radial so we
can ignore the Q-terms. The first equation implies that ¢ = ¢/ f for some constant ¢. On the
other hand, radial light (ds* = 0) rays solve 0 = fdt? — gdr?, id est

dr f
%—ig. (3)

Therefore, 7 = 1/ f/gt = £¢/+/fg and one can differentiate this again to obtain
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If these formulee solve the second equation in (2), we will have shown that radial null rays
are always geodesics. Indeed, substitution yields
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2.b

The equation in the text after shows that 7 is constant—i.e. r is linearly related to the
affine parameter \ and is thus affine itself—iff f¢g = constant.

2.c By symmetry 0 = 0 = w on the radial geodesic congruences so that the Raychaudhuri
equation reduces to § = —36? + R,,k%k". On the other hand 0 = i 4 Area = 27*/r which

gives 0 = 27 [r — %92. Therefore, 27 /r = Rypk®k? so i = 0 & Rgpk®k? = 0.

2.d

(i) The cosmological constant shifts R,, by a term proportional to the metric and hence
contributes a term in the Raychaudhuri equation proportional to gupk®k® = 0.

(7)) A radial electric field (E)T = Fy,. The stress-energy is given by Ty, < FoF,¢ — ga, F2.
Its non-trace part reduces to T,, o Fyoky — F,.Fy.. Since k is radial and null, we
can normalize it to k = (1,1,0,0) in Schwarzschild-like coordinates. Then T,,k%k® =
F2 —F2 =0.

Alternatively, we observe that the 1-form F,,k® has no angular components and is

orthogonal to k% by the anti-symmetry of F'. It follows that it is proportional to k,:
There is some constant ¢ such that F,k® = ck,. Then T, k°k® o< ?k.k® — Tk F? = 0.

For the radial magnetic field (E)T = Fy, we observe that T.,k%kP must vanish because
k has no non-radial parts k’ and/or k?.



(77) This time the non-trace part of the stress tensor is T, = 0,00 and T,,k°k® = (k-0p)?
which does not vanish for generic ¢.

3.a Let 2 := (d\/dv)x for x = 0,0,k. Then
df drdo  d*\
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The Raychaudhuri equation isE|
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Multiply this equation by (d)\/dv)? and plug in @ to obtain
db S Y R raib
o= 50—29 —0° — Ruypk®k” . (8)

3.b Starting with AA = [, 0d°AdX = [, 6d2 Adv, substituting the adiabatic solution of @D
0 ~ (1/K)Rupk®k?, and using the Einstein equation, we obtain

A = 5T [ heda? Adv
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where we have used Ty = k/2m. Since k%d\ = {%dv (recall k% = (d/d\)* and we are just
making a change of variables to Killing time) it follows that k* = £%. Defining the “energy”
ﬂu across the horizon H as 6FEyg = f Lt WwEdX’, we obtain the desired result

. (10)
4.a Imagine pretty drawing here.
4.b In Eddington-Finkelstein coordinates the line element is
ds* = (1 — %) dv® — 2dvdr — r?d)? | (11)

2Ted’s reference has a typo in equation (6).
3This quantity is really the “(energy) — Q(angular momentum)” flux, as it concerns the part of the
energy-momentum tensor projected along the horizon-generating Killing field &.
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where the advanced time coordinate is defined as v = t+4r, in terms of the terrapin coordinate
r. = r+log(r—1). We want to know the form of the out-going null rays. We take, as usual,
d2 = 0 and solve for ds*> = 0. Since we do not want the in-going null geodesic, dv # 0
and we find

2dr

dv = 1 = 2dr, . (12)

= =

Integrating this equation between initial and final configurations with masses M and M +AM
gives

ry— QM) A 13)

W+10g(ri—2M 2. 2M

Here we have restored the units which we had originally defined by setting 2M = 1. Now,
taking the initial radius r; = 2M (1 + €) to be slightly larger than the Schwarzschild radius
and the final radius 7y = 2(M + AM) to be the radius after the second shell collapses,
Ar = 2AM and the equation becomes

= k(v —uv;) . (14)
Finally, discarding small termdgy O(&3) and exponentiating, we find that in the far past
Y M

€ ~ ae™ | (15)

where a = (AM /M) exp(—kvys). We see that as v; — —oo, € — 0+ exponentially.

41t is not necessary to assume that these terms are small. Keeping them simply changes the coefficient a

in .



