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March 28, 2005

1.a The null generators are radial and are specified by r(λ) and t(λ), with fixed angles. As
they form a null geodesic congruence, they extremize the functional I = 1

2

∫
(ṫ2 − ṙ2). (The

angular part is trivially stationary since it is quadratic in the derivatives θ̇ = φ̇ = 0.) The
Euler-Lagrange equations for r following from this functional are 0 = r̈. Hence, r = aλ + b
is an affine parameter for the null generators.

1.b The area of the spherical surfaces dr = 0 of radius r are Area = 4πr2. Then, on the
past light cone1

θ0 =
dArea

dr

Area

∣∣∣
r=r0

=
−2 · 4πr0

4πr2
0

= − 2

r0

. (1)

1.c According to the focusing theorem, θ → −∞ at or before an affine parameter time
λ0 = 2|θ0|−1. Solving (1) gives r0 = − 2

θ0
= 2|θ0|−1. On the cone 0 = t2− r2 this corresponds

to a time λ0 = t0 = r0 in agreement with the theorem.

2.a By the spherical symmetry of the metric, initially radial geodesics remain radial. Fur-
thermore, the square of the 4-velocity is conserved along a geodesic. Therefore, if the geodesic
is radial and null to begin with, it remains radial and null. This is a rigorous argument but
perhaps it is helpful to do it explicitly (if not, skip to 2.b): Geodesics extremize the functional

I = 1
2

∫ (
f ṫ2 − gṙ2 − r2Ω̇2

)
dλ, id est they satisfy the equations

d

dλ

(
f ṫ

)
= 0

f ′ṫ2 − g′ṙ2 + 2
d

dλ
(gṙ)− 2rΩ̇2 = 0

1The sign comes from the fact that r is decreasing on the past light cone.
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r2Ω̈ = 0 . (2)

For initially radial geodesics Ω̇ = 0 the third equation implies that they stay radial so we
can ignore the Ω-terms. The first equation implies that ṫ = c/f for some constant c. On the
other hand, radial light (ds2 = 0) rays solve 0 = fdt2 − gdr2, id est

dr

dt
= ±

√
f

g
. (3)

Therefore, ṙ = ±
√

f/gṫ = ±c/
√

fg and one can differentiate this again to obtain

r̈ = −c2

2

(
f ′

f 2g
+

g′
fg2

)
. (4)

If these formulæ solve the second equation in (2), we will have shown that radial null rays
are always geodesics. Indeed, substitution yields

f ′ c
2

f 2
− g′

c2

fg
+ 2g′

c2

fg
+ 2g

{
−c2

2

(
f ′

f 2g
+

g′
fg2

)}
≡ 0 . (5)

2.b

The equation in the text after (3) shows that ṙ is constant—i.e. r is linearly related to the
affine parameter λ and is thus affine itself—iff fg = constant.

2.c By symmetry σ = 0 = ω on the radial geodesic congruences so that the Raychaudhuri
equation reduces to θ̇ = −1

2θ
2 + Rabk

akb. On the other hand θ = 1
Area

d
dλArea = 2ṙ/r which

gives θ̇ = 2r̈/r − 1
2θ

2. Therefore, 2r̈/r = Rabk
akb so r̈ = 0 ⇔ Rabk

akb = 0.

2.d

(i ) The cosmological constant shifts Rab by a term proportional to the metric and hence
contributes a term in the Raychaudhuri equation proportional to gabk

akb = 0.

(ii ) A radial electric field ( ~E)r = F0r. The stress-energy is given by Tab ∝ FacFb
c− 1

4gabF
2.

Its non-trace part reduces to Tab ∝ Fa0Fb0 − FarFbr. Since k is radial and null, we
can normalize it to k = (1, 1, 0, 0) in Schwarzschild-like coordinates. Then Tabk

akb =
F 2

r0 − F 2
0r ≡ 0.

Alternatively, we observe that the 1-form Fabk
b has no angular components and is

orthogonal to ka by the anti-symmetry of F . It follows that it is proportional to ka:
There is some constant c such that Fabk

b = cka. Then Tabk
akb ∝ c2kak

a − 1
4k

2F 2 = 0.

For the radial magnetic field ( ~B)r = Fθφ we observe that Tabk
akb must vanish because

k has no non-radial parts kθ and/or kφ.
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(iii ) This time the non-trace part of the stress tensor is Tab = ∂aϕ∂bϕ and Tabk
akb = (k ·∂ϕ)2

which does not vanish for generic ϕ.

3.a Let x̂ := (dλ/dv)x for x = θ, σ, k. Then

dθ̂

dv
=

dλ

dv

dθ

dv
+

d2λ

dv2
θ

=

(
dλ

dv

)2
dθ

dλ
+

d2λ

dv2

(
dλ

dv

)−1

θ̂

⇒
(

dλ

dv

)2
dθ

dλ
=

dθ̂

dv
− κθ̂ . (6)

The Raychaudhuri equation is2

dθ

dλ
= −1

2
θ2 − σ2 −Rabk

akb . (7)

Multiply this equation by (dλ/dv)2 and plug in (6) to obtain

dθ̂

dλ
= κθ̂ − 1

2
θ̂2 − σ̂2 −Rabk̂

ak̂b . (8)

3.b Starting with ∆A =
∫

B
θd2Adλ =

∫
B

θ̂d2Adv, substituting the adiabatic solution of (8),

θ̂ ≈ (1/κ)Rabk̂
ak̂b, and using the Einstein equation, we obtain

∆A =
8π

κ

∫
B

Tabk̂
ak̂bd2Adv

=
4

TH

∫
B

Tabk̂
a kbd2Adλ︸ ︷︷ ︸

dΣb

, (9)

where we have used TH = κ/2π. Since kadλ = ξadv (recall ka = (d/dλ)a and we are just
making a change of variables to Killing time) it follows that k̂a = ξa. Defining the “energy”
flux3 across the horizon H as δEH =

∫
H

Tabξ
adΣb, we obtain the desired result

∆A

4
=

δEH

TH

. (10)

4.a Imagine pretty drawing here.

4.b In Eddington-Finkelstein coordinates the line element is

ds2 =

(
1− 1

r

)
dv2 − 2dvdr − r2dΩ2 , (11)

2Ted’s reference has a typo in equation (6).
3This quantity is really the “(energy) − ΩH(angular momentum)” flux, as it concerns the part of the

energy-momentum tensor projected along the horizon-generating Killing field ξ.
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where the advanced time coordinate is defined as v = t+r∗ in terms of the terrapin coordinate
r∗ = r +log(r− 1). We want to know the form of the out-going null rays. We take, as usual,
dΩ = 0 and solve (11) for ds2 = 0. Since we do not want the in-going null geodesic, dv 6= 0
and we find

dv =
2dr

1− 1
r

= 2dr∗ . (12)

Integrating this equation between initial and final configurations with masses M and M+∆M
gives

∆r

2M
+ log

(
rf − 2M

ri − 2M

)
=

∆v

2 · 2M
. (13)

Here we have restored the units which we had originally defined by setting 2M = 1. Now,
taking the initial radius ri = 2M(1 + ε) to be slightly larger than the Schwarzschild radius
and the final radius rf = 2(M + ∆M) to be the radius after the second shell collapses,
∆r = 2∆M and the equation becomes

∆M

M
+ log

(
∆M

Mε

)
= κ(vf − vi) . (14)

Finally, discarding small terms4 O(∆M
M ) and exponentiating, we find that in the far past

ε ∼ aeκvi , (15)

where a = (∆M/M) exp(−κvf ). We see that as vi → −∞, ε → 0+ exponentially.

4It is not necessary to assume that these terms are small. Keeping them simply changes the coefficient a
in (15).
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