- 1. Express the real and imaginary parts of the following functions in terms of x = Re(z) and y = Im(z): z^3 , e^z , e^{iz} , $\sin z$, $1/(z^2 + 1)$.
- 2. Evaluate $\int (z^2 z)dz$ along the following two contours connecting 0 to 1 + i: (a) from 0 to 1 along the real axis and then 1 to 1 + i along the imaginary direction; (b) along the diagonal directly from 0 to 1 + i. (c) Verify that you obtain the same result either way, and explain how you could have known the two integrals would be the same without even evaluating them.
- 3. Find the residues of the following functions at the given values of z:
 - (a) $(z+z^2)^{-1}$ at 0 and at -1.
 - (b) $\ln(1+2z)/z^2$ at 0
 - (c) $[z^3(z+2)^2]^{-1}$ at 0 and at -2.
 - (d) $\cos z/(2z \pi)^4$ at $\pi/2$
 - (e) $(z^2+1)^{-3}$ at $\pm i$.

Hint: See the supplement for methods of evaluating residues.

4. Consider the real integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$$

where a and b are positive real numbers.

- (a) Evaluate the integral using contour integration assuming $a \neq b$ (so there are only simple poles).
- (b) Evaluate the integral using contour integration assuming a = b from the beginning (so the poles are of order 2), and then check that you recover the same result by setting a = b in the result of the previous part.

Hint: You can check your result by testing for a few properties: from the form of the integral it is manifestly positive and symmetric under interchange of a and b, and if you think of a and b as having dimensions, the integral has dimensions of $[a]^{-3}$.

5. (a) Show using contour integration that

$$\int_0^\infty \frac{\cos mx \, dx}{x^2 + a^2} = \frac{\pi}{2a} \epsilon^{-ma}$$

Hint: See the similar example in the textbook.

- (b) Explain in words why the result decays so rapidly (i) as m grows with a fixed, and (ii) as a grows with m fixed.
- 6. Evaluate the integral $\int_0^\infty dx/(x^3+1)$ by relating it to a contour integral over the boundary of an infinite piece of pie with edges $\theta=0$ and $\theta=2\pi/3$, together with the arc at infinity that joins these edges. The answer is $2\pi/3^{3/2}$.

- 7. Problem 16.1h
- 8. Problem 16.3 c,d,e,f
- 9. Consider the flow of a fluid that is incompressible and has no vorticity, so this is "potential flow". Assume the flow velocity vector is constant and points in the x direction, $\mathbf{v} = v_0 \hat{\mathbf{x}}$. The velocity potential f satisfies Laplace's equation, and we can think of this as a two-dimensional problem in the xy plane.
 - (a) Find an analytic function $h_1(z)$ of z = x + iy whose real part is the velocity potential for this flow.
 - (b) What are the flow lines for this flow?
 - (c) How exactly are the flow lines related to $h_1(z)$?
- 10. Consider potential flow in the xy plane past an infinite cylinder of radius R perpendicular to that plane. [This problem is worth 20 pts.]

For the boundary condition "at infinity", suppose that far from the cylinder in all directions the velocity is as in the previous problem, $\mathbf{v} = v_0 \hat{\mathbf{x}}$. The boundary condition at the cylinder surface is that there is no flow perpendicular to the cylinder, so $\mathbf{v} \cdot \hat{\mathbf{r}} = 0$, taking the origin of polar coordinates at the center of the cylinder. That is, the partial derivative of the velocity potential with respect to radius r (at fixed angle) vanishes at r = R.

To solve for the flow we need only find an analytic function of z = x + iy whose real part satisfies the appropriate boundary conditions.

- (a) Find an analytic function $h_2(z)$, to be added to your function $h_1(z)$ from the previous problem, such that the real part of $h(z) = h_1(z) + h_2(z)$ satisfies the boundary condition everywhere on the cylinder, as well as the boundary condition at infinity. To do this assume $h_2(z) = az^n$, and find values for constants a and n so that the boundary conditions are satisfied. (*Hint*: Use polar coordinates.)
- (b) Using your result from the previous part, find the velocity (magnitude and direction) at the point (x, y) = (0, R) on the surface of the cylinder.
- (c) Explain why the flow lines are given by the contours of the imaginary part of h(z).
- (d) Find the equation for the flow line that goes through the point $(x, y) = (0, y_0)$ (with $y_0 > R$). (The equation should involve x, y, y_0, v_0 and R.)
- (e) Find the asymptotic y value y_{∞} when $x \to \infty$ for the flow line of problem 10d.
- (f) Sketch the flow line of problem 10d along with the circle of radius R representing the cross-section of the cylinder.