Homework 3

Instructor: Dr. Thomas Cohen
Submitted by: Vivek Saxena

1 Goldstein 8.1

1.1 Part (a)

The Hamiltonian is given by

$$
\begin{equation*}
H\left(q_{i}, p_{i}, t\right)=p_{i} \dot{q}_{i}-L\left(q_{i}, \dot{q}_{i}, t\right) \tag{1}
\end{equation*}
$$

where all the \dot{q}_{i} 's on the RHS are to be expressed in terms of q_{i}, p_{i} and t. Now,

$$
\begin{equation*}
d H=\frac{\partial H}{\partial q_{i}} d q_{i}+\frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial t} d t \tag{2}
\end{equation*}
$$

From (1),

$$
\begin{align*}
d H & =p_{i} d \dot{q}_{i}+\dot{q}_{i} d p_{i}-d L \\
& =p_{i} d \dot{q}_{i}+\dot{q}_{i} d p_{i}-\left(\frac{\partial L}{\partial q_{i}} d q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}+\frac{\partial L}{\partial t} d t\right) \\
& =-\frac{\partial L}{\partial q_{i}} d q_{i}+\dot{q}_{i} d p_{i}+\left(p_{i}-\frac{\partial L}{\partial \dot{q}_{i}}\right) d \dot{q}_{i}-\frac{\partial L}{\partial t} d t \tag{3}
\end{align*}
$$

Comparing (2) and (3) we get

$$
\begin{align*}
\frac{\partial H}{\partial q_{i}}=-\frac{\partial L}{\partial q_{i}} & =-\dot{p}_{i} \quad \text { (2nd equality from Hamilton's equation) } \tag{4}\\
\dot{q}_{i} & =\frac{\partial H}{\partial q_{i}} \quad \text { (also Hamilton's equation) } \tag{5}\\
p_{i}-\frac{\partial L}{\partial \dot{q}_{i}} & =0 \quad\left(\mathrm{H} \text { is not explicitly dependent on } \dot{q}_{i}\right) \tag{6}\\
-\frac{\partial L}{\partial t} & =\frac{\partial H}{\partial t} \tag{7}
\end{align*}
$$

From (4) and (6) we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0, \quad i=1,2, \ldots, n \tag{8}
\end{equation*}
$$

which are the Euler-Lagrange equations.

1.2 Part (b)

$$
\begin{align*}
L^{\prime}(p, \dot{p}, t) & =-\dot{p}_{i} q_{i}-H(q, p, t) \tag{9}\\
& =p_{i} \dot{q}_{i}-H(q, p, t)-\frac{d}{d t}\left(p_{i} q_{i}\right) \tag{10}\\
& =L(q, \dot{q}, t)-\frac{d}{d t}\left(p_{i} q_{i}\right) \tag{11}\\
& =L(q, \dot{q}, t)-\dot{p}_{i} q_{i}-p_{i} \dot{q}_{i} \tag{12}
\end{align*}
$$

So,

$$
\begin{align*}
d L^{\prime} & =\frac{\partial L^{\prime}}{\partial p_{i}} d p_{i}+\frac{\partial L^{\prime}}{\partial \dot{p}_{i}} d \dot{p}_{i}+\frac{\partial L^{\prime}}{\partial t} d t \tag{13}\\
& =-\dot{q}_{i} d p_{i}-q_{i} d \dot{p}_{i}+\frac{\partial L}{\partial t} d t \quad(\text { from (9)) } \tag{14}
\end{align*}
$$

Comparing (12) and (13) we get

$$
\begin{align*}
\dot{q}_{i} & =-\frac{\partial L^{\prime}}{\partial p_{i}} \tag{15}\\
q_{i} & =-\frac{\partial L^{\prime}}{\partial \dot{p}_{i}} \tag{16}
\end{align*}
$$

Thus the equations of motion are

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L^{\prime}}{\partial \dot{p}_{i}}\right)-\frac{\partial L^{\prime}}{\partial p_{i}}=0, \quad i=1,2, \ldots, n \tag{17}
\end{equation*}
$$

2 Goldstein 8.6

Hamilton's principle is

$$
\begin{equation*}
\delta \int L d t=0 \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\delta \int 2 L d t=0 \tag{19}
\end{equation*}
$$

We can subtract the total time derivative of a function whose variation vanishes at the end points of the path, from the integrand, without invalidating the variational principle. This is because such a function will only contribute to boundary terms involving the variation of q_{i} and p_{i} at the end points of the path, which vanish by assumption. Such a function is $p_{i} q_{i}$. So, the 'modified' Hamilton's principle is

$$
\begin{equation*}
\delta \int\left(2 L-\frac{d}{d t}\left(p_{i} q_{i}\right)\right) d t=0 \tag{20}
\end{equation*}
$$

Using the Legendre transformation, this becomes

$$
\begin{align*}
& \delta \int\left(2 p_{i} \dot{q}_{i}-2 H-p_{i} \dot{q}_{i}-\dot{p}_{i} q_{i}\right) d t=0 \tag{21}\\
& \quad \Longrightarrow \delta \int\left(2 H+\dot{p}_{i} q_{i}-p_{i} \dot{q}_{i}\right) d t=0 \tag{22}
\end{align*}
$$

now,

$$
\begin{align*}
\dot{p}_{i} q_{i}-p_{i} \dot{q}_{i} & =\left[\begin{array}{lllllll}
q_{1} & \ldots & q_{n} & \mid p_{1} \ldots & p_{n}
\end{array}\right]_{1 \times 2 n}\left(\begin{array}{cc}
\mathbf{0}_{n \times n} & \mathbf{1}_{n \times n} \\
-\mathbf{1}_{n \times n} & \mathbf{0}_{n \times n}
\end{array}\right)_{2 n \times 2 n}\left[\begin{array}{c}
\dot{q}_{1} \\
\cdot \\
\cdot \\
\dot{q}_{n} \\
-- \\
\dot{p}_{1} \\
\cdot \\
\cdot \\
\dot{p}_{n}
\end{array}\right]_{2 n \times 1} \\
& =\boldsymbol{\eta}^{T} \boldsymbol{J} \dot{\boldsymbol{\eta}} \tag{24}
\end{align*}
$$

So (22) becomes

$$
\begin{equation*}
\delta \int\left(2 H+\boldsymbol{\eta}^{T} \boldsymbol{J} \dot{\boldsymbol{\eta}}\right) d t=0 \tag{25}
\end{equation*}
$$

which is the required form of Hamilton's principle.

3 Goldstein 8.9

The constraints can be incorporated into the Lagrangian L by defining a "constrained Lagrangian" L_{c}, as

$$
\begin{equation*}
L_{c}(q, \dot{q}, t)=L(q, \dot{q}, t)-\sum_{k} \lambda_{k} \psi_{k}(q, p, t) \tag{26}
\end{equation*}
$$

Applying Hamilton's principle, and using the Legendre transformation for L, we get

$$
\begin{equation*}
\delta \int\left(p_{i} \dot{q}_{i}-H(q, p, t)-\sum_{k} \lambda_{k} \psi_{k}(q, p, t)\right) d t=0 \tag{27}
\end{equation*}
$$

By analogy with the constrained Lagrangian, we can define a "constrained Hamiltonian" H_{c} as

$$
\begin{equation*}
H_{c}(q, p, t)=H(q, p, t)+\sum_{k} \lambda_{k} \psi_{k}(q, p, t) \tag{28}
\end{equation*}
$$

Since both the terms are functions of q_{i}, p_{i} and t, this is a "good" Hamiltonian. Equation (27) can then be written as

$$
\begin{gather*}
\delta \int\left(p_{i} \dot{q}_{i}-H_{c}(q, p, t)\right) d t=0 \tag{29}\\
\mathbf{3}-3
\end{gather*}
$$

This bears a resemblance to the usual variational principle in Hamiltonian mechanics, for a Hamiltonian H_{c}. So the Hamilton equations are

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H_{c}}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H_{c}}{\partial q_{i}}
\end{aligned}
$$

which become

$$
\begin{align*}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}}+\sum_{k} \lambda_{k} \frac{\partial \psi_{k}}{\partial p_{i}} \tag{30}\\
-\dot{p}_{i} & =\frac{\partial H}{\partial q_{i}}+\sum_{k} \lambda_{k} \frac{\partial \psi_{k}}{\partial q_{i}} \tag{31}
\end{align*}
$$

Time as a canonical variable

If time t is treated as a canonical variable, we define $q_{n+1}=t$. By Hamilton's equations

$$
\begin{align*}
\dot{p}_{n+1} & =-\frac{\partial H}{\partial q_{n+1}} \tag{32}\\
& =-\frac{\partial H}{\partial t} \tag{33}\\
& =-\frac{d H}{d t} \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
\dot{q}_{n+1} & =\frac{\partial H}{\partial p_{n+1}} \tag{35}\\
& =1 \quad\left(\text { since } q_{n+1}=t\right) \tag{36}
\end{align*}
$$

As the Hamiltonian contains terms of the form $p_{i} \dot{q}_{i}$ for each coordinate and its canonical momentum, in order to incorporate the constraint imposed by the inclusion of time as the $(n+1)^{\text {th }}$ canonical variable, we include a term of the form $p_{n+1} \dot{q}_{n+1}=p_{n+1}$ to the Hamiltonian to set up the constraint. Equivalently, the constraint can be obtained by integrating equation (34) above, and is given by

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{n}, q_{n+1} ; p_{1}, \ldots, p_{n}\right)+p_{n+1}=0 \tag{37}
\end{equation*}
$$

Hamilton's principle,

$$
\begin{equation*}
\delta \int\left(p_{i} \dot{q}_{i}-H\right) d t=0 \tag{38}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\delta \int\left(p_{i} \dot{q}_{i}-H\right) t^{\prime} d \theta=0 \tag{39}
\end{equation*}
$$

where $t^{\prime}=d t / d \theta$ and θ is some parameter.

Using the constrained form of Hamilton's equations we get

$$
\begin{align*}
\dot{q}_{i} & =(1+\lambda) \frac{\partial H}{\partial p_{i}}, \quad i=1,2, \ldots n \tag{40}\\
\dot{p}_{i} & =-(1+\lambda) \frac{\partial H}{\partial q_{i}}, \quad i=1,2, \ldots n \tag{41}\\
\dot{q}_{n+1} & =\lambda \tag{42}\\
\dot{p}_{n+1} & =-(1+\lambda) \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} \tag{43}
\end{align*}
$$

By regarding $H^{\prime}=(1+\lambda) H$ as an equivalent Hamiltonian, these equations are the required $(2 n+2)$ equations of motion. Also, $\lambda=\dot{q}_{n+1}=d t / d \theta$.

4 Goldstein 8.26

4.1 Part (a)

In the given configuration, both springs elongate or compress by the same magnitude. Suppose q denotes the position of the mass m from the left end. At $t=0, q(0)=a / 2$, but the unstretched lengths of both springs are given to be zero. Therefore, the elongation (compression) of spring k_{1} is q and the compression (elongation) of spring k_{2} is q. The potential energy is

$$
\begin{equation*}
V=\frac{1}{2} k_{1} q^{2}+\frac{1}{2} k_{2} q^{2}=\frac{1}{2}\left(k_{1}+k_{2}\right) q^{2} \tag{44}
\end{equation*}
$$

The kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} m \dot{q}^{2} \tag{45}
\end{equation*}
$$

The Lagrangian is

$$
\begin{equation*}
L=T-V=\frac{1}{2} m \dot{q}^{2}-\frac{1}{2}\left(k_{1}+k_{2}\right) q^{2} \tag{46}
\end{equation*}
$$

The momentum canonically conjugate to the coordinate q is

$$
\begin{equation*}
p_{q}=\frac{\partial L}{\partial \dot{q}}=m \dot{q} \tag{47}
\end{equation*}
$$

So the Hamiltonian is

$$
\begin{equation*}
H=p_{q} \dot{q}-L=\frac{1}{2} m \dot{q}^{2}+\frac{1}{2}\left(k_{1}+k_{2}\right) q^{2} \tag{48}
\end{equation*}
$$

that is,

$$
\begin{equation*}
H\left(q, p_{q}, t\right)=\frac{p_{q}^{2}}{2 m}+\frac{1}{2}\left(k_{1}+k_{2}\right) q^{2} \tag{49}
\end{equation*}
$$

Clearly, the Hamiltonian equals the total energy E. The energy is conserved since,

$$
\begin{equation*}
\frac{d E}{d t}=m \dot{q} \ddot{q}+\left(k_{1}+k_{2}\right) q \dot{q}=\dot{q}\left(-\left(k_{1}+k_{2}\right) q\right)+\left(k_{1}+k_{2}\right) q \dot{q}=0 \tag{50}
\end{equation*}
$$

where we have used the equation of motion ${ }^{1}$. In this case, the Hamiltonian is also conserved.

$$
{ }^{1} \frac{d}{d t}\left(\frac{\partial L}{\partial \ddot{q}}\right)-\frac{\partial L}{\partial q}=0 \Longrightarrow m \ddot{q}+\left(k_{1}+k_{2}\right) q=0
$$

4.2 Part (b)

Substituting $q=Q+b \sin (\omega t)$ and $\dot{q}=Q+b \omega \cos (\omega t)$ into the expression for the Lagrangian, we get

$$
\begin{equation*}
L(Q, \dot{Q}, t)=\frac{1}{2} m(\dot{Q}+b \omega \cos (\omega t))^{2}-\frac{1}{2}\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))^{2} \tag{51}
\end{equation*}
$$

and the momentum canonically conjugate to the coordinate Q is given by

$$
\begin{equation*}
p_{Q}=\frac{\partial L}{\partial \dot{Q}}=m(\dot{Q}+b \omega \cos (\omega t)) \tag{52}
\end{equation*}
$$

So the Hamiltonian becomes

$$
\begin{align*}
H\left(Q, p_{Q}, t\right) & =p_{Q} \dot{Q}-L(Q, \dot{Q}, t) \tag{53}\\
& =m(\dot{Q}+b \omega \cos (\omega t)) \dot{Q}-\frac{1}{2} m(\dot{Q}+b \omega \cos (\omega t))^{2}+\frac{1}{2}\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))^{2} \\
& =\frac{m \dot{Q}^{2}}{2}-\frac{m b^{2} \omega^{2}}{2} \cos ^{2}(\omega t)+\frac{1}{2}\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))^{2} \\
& =\frac{p_{Q}^{2}}{2 m}-p_{Q} b \omega \cos (\omega t)+\frac{1}{2}\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))^{2} \tag{54}
\end{align*}
$$

The Hamiltonian is now explicitly dependent on time, and hence is not conserved, as is confirmed by the fact that $d H / d t \neq 0$. The energy is given by

$$
\begin{equation*}
E=T+V=\frac{1}{2}(\dot{Q}+b \omega \cos (\omega t))^{2}+\frac{1}{2}\left(k_{1}+k_{2}\right)(Q+b \omega \sin (\omega t))^{2} \tag{55}
\end{equation*}
$$

So,

$$
\begin{align*}
\frac{d E}{d t} & =m(\dot{Q}+b \omega \cos (\omega t))\left(\ddot{Q}-b \omega^{2} \sin (\omega t)\right)+\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))(\dot{Q}+b \omega \cos (\omega t)) \\
& =(\dot{Q}+b \omega \cos (\omega t))\left(m\left(\ddot{Q}-B \omega^{2} \sin (\omega t)\right)+\left(k_{1}+k_{2}\right)(Q+b \sin (\omega t))\right) \\
& =(\dot{Q}+b \omega \cos (\omega t))\left(m \ddot{q}+\left(k_{1}+k_{2}\right) q\right) \tag{56}\\
& =0 \quad \text { (c.f. footnote on prev. page) } \tag{57}
\end{align*}
$$

Therefore, the energy is conserved, as expected (the energy is still given by $T+V$, but the Hamiltonian is not $T+V$ anymore, as the relationship connecting the generalized coordinate to the cartesian coordinate is now explicitly dependent on time).

5 Goldstein 8.23

5.1 Part (a)

The Lagrangian for the system is

$$
\begin{equation*}
L=\frac{1}{2} m(\boldsymbol{v} \cdot \boldsymbol{v})+e \boldsymbol{A}(r) \cdot \boldsymbol{v}-e V(r) \tag{58}
\end{equation*}
$$

The canonical momentum is

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial \boldsymbol{v}}=m \boldsymbol{v}+e \boldsymbol{A} \tag{59}
\end{equation*}
$$

So the Hamiltonian is

$$
\begin{align*}
H & =\boldsymbol{p} \cdot \boldsymbol{v}-L \tag{60}\\
& =(m \boldsymbol{v}+e \boldsymbol{A}) \cdot \boldsymbol{v}-\left(\frac{1}{2} m(\boldsymbol{v} \cdot \boldsymbol{v})+e \boldsymbol{A}(r) \cdot \boldsymbol{v}-e V(r)\right) \\
& =\frac{m}{2} \boldsymbol{v} \cdot \boldsymbol{v}+e V(r) \\
& =\frac{(\boldsymbol{p}-e \boldsymbol{A}) \cdot(\boldsymbol{p}-e \boldsymbol{A})}{2 m}+e V(r) \tag{61}\\
& =\frac{1}{2 m}\left(\boldsymbol{p}^{2}-2 e \boldsymbol{p} \cdot \boldsymbol{A}+e^{2} \boldsymbol{A}^{2}\right)+e V(r) \tag{62}
\end{align*}
$$

Now,

$$
\begin{align*}
\boldsymbol{p} \cdot \boldsymbol{A} & =\boldsymbol{p} \cdot \frac{1}{2} \boldsymbol{B} \times \boldsymbol{r} \\
& =\frac{1}{2} \boldsymbol{B} \cdot(\boldsymbol{r} \times \boldsymbol{p}) \tag{63}\\
& =\frac{1}{2} \boldsymbol{B} \cdot \boldsymbol{J} \tag{64}
\end{align*}
$$

where $\boldsymbol{J}=\boldsymbol{r} \times \boldsymbol{p}$ denotes the angular momentum. Also,

$$
\begin{align*}
\boldsymbol{A}^{2} & =\frac{1}{4}(\boldsymbol{B} \times \boldsymbol{r}) \cdot(\boldsymbol{B} \times \boldsymbol{r}) \\
& =\frac{1}{4} B^{2} r^{2} \quad(\text { as } \boldsymbol{B} \text { is perpendicular to } \boldsymbol{r}) \tag{65}
\end{align*}
$$

So the Hamiltonian of equation (58) becomes

$$
\begin{equation*}
H=\frac{\boldsymbol{p}^{2}}{2 m}-\frac{e}{2 m} \boldsymbol{B} \cdot \boldsymbol{J}+\frac{e^{2}}{8 m} B^{2} r^{2}+e V(r) \tag{66}
\end{equation*}
$$

5.2 Part (b)

Let $\boldsymbol{v}_{\boldsymbol{l a b}}=(\dot{x}, \dot{y})$ denote the velocity of the particle in the lab frame, and $\boldsymbol{v}^{\prime}=\left(\dot{x}^{\prime}, \dot{y}^{\prime}\right)$ denote the velocity in the rotating frame. Without loss of generality, we may assume that motion is confined to the $x y$-plane. We first derive a relationship between the Hamiltonian in a rotating frame with that in a non-rotating frame (in this case, the lab frame). The coordinates are related by

$$
\begin{align*}
x & =x^{\prime} \cos (\omega t)-y^{\prime} \sin (\omega t) \tag{67}\\
y & =x^{\prime} \sin (\omega t)+y^{\prime} \cos (\omega t) \tag{68}
\end{align*}
$$

Here, it has been assumed that the rotation is counterclockwise, i.e. $\omega>0$ for counterclockwise rotation. So the velocity components are related by

$$
\begin{align*}
\dot{x} & =\dot{x}^{\prime} \cos (\omega t)-\dot{y}^{\prime} \sin (\omega t)-\omega\left(x^{\prime} \sin (\omega t)+y^{\prime} \cos (\omega t)\right) \tag{69}\\
y & =\dot{x}^{\prime} \sin (\omega t)+\dot{y}^{\prime} \cos (\omega t)-\omega\left(x^{\prime} \cos (\omega t)-y^{\prime} \sin (\omega t)\right) \tag{70}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\boldsymbol{v}_{l a b}{ }^{2}=\dot{x}^{2}+\dot{y}^{2}=\dot{x}^{\prime 2}+\dot{y}^{\prime 2}+2 \omega(x \dot{y}-\dot{x} y)+\omega^{2} r^{2} \tag{71}
\end{equation*}
$$

The Lagrangian in the lab frame is

$$
\begin{align*}
L & =\frac{1}{2} m \boldsymbol{v}_{\boldsymbol{l a b}}{ }^{2}-e V(r) \tag{72}\\
& =\frac{1}{2} m\left(\dot{x}^{\prime 2}+\dot{y}^{\prime 2}\right)+m \omega\left(x^{\prime} \dot{y}^{\prime}-\dot{x}^{\prime} y^{\prime}\right)+\frac{1}{2} m \omega^{2} r^{2}-e V(r) \tag{73}
\end{align*}
$$

The momenta canonically conjugate to x and y in the rotating system are

$$
\begin{align*}
& p_{x^{\prime}}=\frac{\partial L}{\partial \dot{x}^{\prime}}=m\left(\dot{x}^{\prime}-\omega y^{\prime}\right) \tag{74}\\
& p_{y^{\prime}}=\frac{\partial L}{\partial \dot{y}^{\prime}}=m\left(\dot{y}^{\prime}+\omega x^{\prime}\right) \tag{75}
\end{align*}
$$

So the Hamiltonian in the rotating frame is

$$
\begin{align*}
H & =p_{x^{\prime}} \dot{x}^{\prime}+p_{y^{\prime}} \dot{y}^{\prime}-L \tag{76}\\
& =\frac{p_{x^{\prime}}^{2}+p_{y^{\prime}}^{2}}{2 m}+\omega\left(y^{\prime} p_{x^{\prime}}-x^{\prime} p_{y^{\prime}}\right)+e V(r) \tag{77}\\
& =\frac{p_{x^{\prime}}^{2}+p_{y^{\prime}}^{2}}{2 m}-J_{z}^{\prime} \omega+e V(r) \tag{78}
\end{align*}
$$

where J_{z}^{\prime} denotes the angular momentum in the z-direction (direction of $\boldsymbol{\omega}$) as measured in the rotating frame. This means that for counterclockwise rotation along the z-axis,

$$
\begin{equation*}
H_{\text {rotating frame }}=H_{\text {lab frame }}-\omega J_{z} \tag{79}
\end{equation*}
$$

This is the general relationship between Hamiltonians in the lab frame and rotating frame.
For this problem, from equation (62) above, we have

$$
\begin{equation*}
H_{\text {lab frame }}=\frac{\boldsymbol{p}^{2}}{2 m}-\frac{e B}{2 m} J+\frac{e^{2}}{8 m} B^{2} r^{2}+e V(r) \tag{80}
\end{equation*}
$$

as $\boldsymbol{B}=B \hat{\boldsymbol{z}}$ and $\boldsymbol{J}=J_{z} \hat{\boldsymbol{z}}=J \hat{\boldsymbol{z}}$. So, the Hamiltonian in the rotating frame is

$$
\begin{equation*}
H_{\text {rotating frame }}=\frac{\boldsymbol{p}^{2}}{2 m}-\left(\omega+\frac{e B}{2 m}\right) J_{z}+\frac{e^{2}}{8 m} B^{2} r^{2}+e V(r) \tag{81}
\end{equation*}
$$

It is interesting to note that if $\omega=\omega_{c}=-\frac{e B}{2 m}$, then the term linear in the magnetic field vanishes. In this problem, it is given that

$$
\begin{equation*}
\boldsymbol{\omega}=-\frac{e \boldsymbol{B}}{m} \tag{82}
\end{equation*}
$$

which is twice the frequency ω_{c}. So, in this case, the Hamiltonian becomes

$$
\begin{equation*}
H_{\text {rotating frame }}=\frac{\boldsymbol{p}^{2}}{2 m}+\frac{e B}{2 m} J_{z}+\frac{e^{2}}{8 m} B^{2} r^{2}+e V(r) \tag{83}
\end{equation*}
$$

6 Problem 1

6.1 Part (a)

The subscript $P B$ is suppressed for clarity.

$$
\begin{aligned}
{\left[L_{i}, L_{j}\right]_{P B} } & =\left[\epsilon_{i \alpha \beta} x_{\alpha} p_{\beta}, \epsilon_{j \gamma \delta} x_{\gamma} p_{\delta}\right] \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \gamma \delta}\left[x_{\alpha} p_{\beta}, x_{\gamma} p_{\delta}\right] \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \gamma \delta}\left(x_{\alpha}\left[p_{\beta}, x_{\gamma} p_{\delta}\right]+\left[x_{\alpha}, x_{\gamma} p_{\delta}\right] p_{\beta}\right) \quad\left(\operatorname{as}[A, B C]_{P B}=B[A, C]_{P B}+[A, B]_{P B} C\right) \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \gamma \delta}\left(x_{\alpha}\left[p_{\beta}, x_{\gamma}\right] p_{\delta}+x_{\alpha} x_{\gamma}\left[p_{\beta}, p_{\delta}\right]+\left[x_{\alpha}, x_{\gamma}\right] p_{\delta} p_{\beta}+x_{\gamma}\left[x_{\alpha}, p_{\delta}\right] p_{\beta}\right) \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \gamma \delta}\left(-\delta_{\beta \gamma} x_{\alpha} p_{\delta}+\delta_{\alpha \delta} x_{\gamma} p_{\beta}\right) \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \beta \delta}\left(-x_{\alpha} p_{\delta}\right)+\epsilon_{i \alpha \beta} \epsilon_{j \gamma \alpha} x_{\gamma} p_{\beta} \\
& =\epsilon_{i \alpha \beta} \epsilon_{j \delta \beta} x_{\alpha} p_{\delta}-\epsilon_{i \beta \alpha} \epsilon_{j \gamma \alpha} x_{\alpha} p_{\beta} \\
& =\left(\delta_{i j} \delta_{\alpha \delta}-\delta_{i \delta} \delta_{j \alpha}\right) x_{\alpha} p_{\delta}-\left(\delta_{i j} \delta_{\beta \gamma}-\delta_{i \gamma} \delta_{j \beta}\right) x_{\gamma} p_{\beta} \\
& =\left(\delta_{i j} x_{\alpha} p_{\alpha}-x_{j} p_{i}\right)-\left(\delta_{i j} x_{\beta} p_{\beta}-x_{i} p_{j}\right) \\
& =x_{i} p_{j}-x_{j} p_{i}
\end{aligned}
$$

Now, $\left[L_{1}, L_{2}\right]_{P B}=x_{1} p_{2}-x_{2} p_{1}=L_{3},\left[L_{1}, L_{3}\right]_{P B}=x_{1} p_{3}-x_{3} p_{1}=-L_{2},\left[L_{3}, L_{2}\right]_{P B}=$ $x_{3} p_{2}-x_{2} p_{3}=\epsilon_{321}-L_{1}$, etc. So, $x_{i} p_{j}-x_{j} p_{i}=\epsilon_{i j k} L_{k}$.

Hence, $\left[L_{i}, L_{j}\right]_{P B}=\epsilon_{i j k} L_{k}$.

6.2 Part (b)

For each $i=1,2,3$,

$$
\begin{aligned}
{\left[L_{i}, L^{2}\right]_{P B} } & =\left[L_{i}, L_{j} L_{j}\right] \quad(\text { sum over } j) \\
& =L_{j}\left[L_{i}, L_{j}\right]+\left[L_{i}, L_{j}\right] L_{j} \\
& =L_{j}\left(\epsilon_{i j k} L_{k}\right)+\left(\epsilon_{i j k} L_{k}\right) L_{j} \\
& =2 \epsilon_{i j k} L_{j} L_{k} \\
& =0 \quad \text { (as } \epsilon_{i j k} \text { is antisymmetric under } j \leftrightarrow k, \text { while } L_{j} L_{k} \text { is symmetric.) }
\end{aligned}
$$

So,

$$
\begin{equation*}
\left[\boldsymbol{L}, L^{2}\right]_{P B}=\hat{\boldsymbol{e}}_{i}\left[L_{i}, L^{2}\right]_{P B}=\mathbf{0} \tag{84}
\end{equation*}
$$

6.3 Part (c)

For each $i=1,2,3$,

$$
\begin{equation*}
\left[L_{i}, f(r)\right]_{P B}=\frac{\partial L_{i}}{\partial x_{\alpha}} \frac{\partial f(r)}{\partial p_{\alpha}}-\frac{\partial L_{i}}{\partial p_{\alpha}} \frac{\partial f(r)}{\partial x_{\alpha}} \tag{85}
\end{equation*}
$$

Now, $r=\sqrt{x_{i} x_{i}}$ and $L_{i}=\epsilon_{i j k} x_{j} p_{k}$, so

$$
\begin{align*}
\frac{\partial f}{\partial x_{\alpha}} & =\frac{\partial r}{\partial x_{\alpha}} \frac{\partial f}{\partial r}=\frac{x_{\alpha}}{r} \frac{\partial f}{\partial r} \tag{86}\\
\frac{\partial f}{\partial p_{\alpha}} & =0 \tag{87}
\end{align*}
$$

So,

$$
\begin{align*}
{\left[L_{i}, f(r)\right]_{P B} } & =-\frac{\partial L_{i}}{\partial p_{\alpha}} \frac{\partial f(r)}{\partial x_{\alpha}} \\
& =-\frac{x_{\alpha}}{r} \frac{\partial\left(\epsilon_{i j k} x_{j} p_{k}\right)}{\partial p_{\alpha}} \frac{\partial f(r)}{\partial r} \\
& =-\frac{\epsilon_{i j k} x_{\alpha} x_{j} \delta_{\alpha, k}}{r} \frac{\partial f}{\partial r} \\
& =-\frac{\epsilon_{i j k} x_{j} x_{k}}{r} \frac{\partial f}{\partial r} \\
& =-\frac{(\boldsymbol{r} \times \boldsymbol{r})_{i}}{r} \frac{\partial f}{\partial r} \\
& =0 \tag{88}
\end{align*}
$$

7 Problem 2

7.1 Part (a)

$$
\begin{equation*}
\left[\xi_{i}, \xi_{j}\right]=\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}} \tag{89}
\end{equation*}
$$

So,

$$
\begin{align*}
\frac{d}{d \epsilon}\left[\xi_{i}, \xi_{j}\right]= & \frac{d}{d \epsilon}\left(\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}\right) \\
= & \frac{d}{d \epsilon}\left(\frac{\partial \xi_{i}}{\partial \eta_{\alpha}}\right) J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{d}{d \epsilon}\left(\frac{\partial \xi_{j}}{\partial \eta_{\beta}}\right) \\
= & \frac{\partial}{\partial \eta_{\alpha}}\left(\frac{d \xi_{i}}{d \epsilon}\right) J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial}{\partial \eta_{\beta}}\left(\frac{d \xi_{j}}{d \epsilon}\right) \\
= & \frac{\partial}{\partial \eta_{\alpha}}\left(\left[\xi_{i}, g\right]\right) J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial}{\partial \eta_{\beta}}\left(\left[\xi_{j}, g\right]\right) \\
= & \frac{\partial}{\partial \eta_{\alpha}}\left(\frac{\partial \xi_{i}}{\partial \eta_{\gamma}} J_{\gamma \delta} \frac{\partial g}{\partial \eta_{\delta}}\right) J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial}{\partial \eta_{\beta}}\left(\frac{\partial \xi_{j}}{\partial \eta_{\omega}} J_{\omega \theta} \frac{\partial g}{\partial \eta_{\theta}}\right) \\
= & \left(\frac{\partial^{2} \xi_{i}}{\partial \eta_{\alpha} \partial \eta_{\gamma}} J_{\gamma \delta} \frac{\partial g}{\partial \eta_{\delta}}+\frac{\partial \xi_{i}}{\partial \eta_{\gamma}} J_{\gamma \delta} \frac{\partial^{2} g}{\partial \eta_{\alpha} \eta_{\delta}}\right) J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}} \\
& +\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta}\left(\frac{\partial^{2} \xi_{j}}{\partial \eta_{\beta} \partial \eta_{\omega}} J_{\omega \theta} \frac{\partial g}{\partial \eta_{\theta}}+\frac{\partial \xi_{j}}{\partial \eta_{\omega}} J_{\omega \theta} \frac{\partial^{2} g}{\partial \eta_{\beta} \partial \eta_{\theta}}\right) \tag{90}
\end{align*}
$$

Now, for $\epsilon=0, \boldsymbol{\xi}=\boldsymbol{\eta}$, so the second order terms

$$
\left.\frac{\partial^{2} \xi_{i}}{\partial \eta_{\alpha} \partial \eta_{\gamma}}\right|_{\epsilon=0},\left.\quad \frac{\partial^{2} \xi_{j}}{\partial \eta_{\beta} \partial \eta_{\omega}}\right|_{\epsilon=0}
$$

equal zero. So,

$$
\begin{align*}
\left.\frac{d}{d \epsilon}\left[\xi_{i}, \xi_{j}\right]\right|_{\epsilon=0} & =\frac{\partial \xi_{i}}{\partial \eta_{\gamma}} J_{\gamma \delta} \frac{\partial^{2} g}{\partial \eta_{\alpha} \partial \eta_{\delta}} J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\beta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial \xi_{j}}{\partial \eta_{\omega}} J_{\omega \theta} \frac{\partial^{2} g}{\partial \eta_{\beta} \partial \eta_{\theta}} \tag{91}\\
& =\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial^{2} g}{\partial \eta_{\gamma} \partial \eta_{\beta}} J_{\gamma \delta} \frac{\partial \xi_{j}}{\partial \eta_{\delta}}+\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial^{2} g}{\partial \eta_{\gamma} \partial \eta_{\beta}} J_{\delta \gamma} \frac{\partial \xi_{j}}{\partial \eta_{\delta}} \tag{92}
\end{align*}
$$

which is obtained by switching $\gamma \leftrightarrow \alpha, \delta \leftrightarrow \beta$ in the first term and $\theta \leftrightarrow \gamma, \omega \leftrightarrow \delta$ in the second term. As J is antisymmetric, $J_{\delta \gamma}=-J_{\gamma \delta}$. So,

$$
\begin{align*}
\left.\frac{d}{d \epsilon}\left[\xi_{i}, \xi_{j}\right]\right|_{\epsilon=0} & =\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial^{2} g}{\partial \eta_{\gamma} \partial \eta_{\beta}} J_{\gamma \delta} \frac{\partial \xi_{j}}{\partial \eta_{\delta}}-\frac{\partial \xi_{i}}{\partial \eta_{\alpha}} J_{\alpha \beta} \frac{\partial^{2} g}{\partial \eta_{\gamma} \partial \eta_{\beta}} J_{\gamma \delta} \frac{\partial \xi_{j}}{\partial \eta_{\delta}} \tag{93}\\
& =0 \tag{94}
\end{align*}
$$

So upto $O\left(\epsilon^{2}\right)$, we have $d\left[\xi_{i}, \xi_{j}\right] / d \epsilon=0$ and so $\left[\xi_{i}, \xi_{j}\right]$ is constant up to $O\left(\epsilon^{2}\right)$. As $\left.\left[\xi_{i}, \xi_{j}\right]\right|_{\epsilon=0}=$ $\left[\eta_{i}, \eta_{j}\right]=J_{i j}$, we have $\left[\xi_{i}, \xi_{j}\right]=J_{i j}$ upto $O\left(\epsilon^{2}\right)$.

So, $\boldsymbol{\xi}$ is a canonical transformation upto $O\left(\epsilon^{2}\right)$.

7.2 Part (b)

First of all,

$$
\begin{equation*}
\boldsymbol{\eta}(\xi, 0)=\boldsymbol{\xi} \tag{95}
\end{equation*}
$$

because at $t=0$, the canonical coordinates overlap in phase space. So, using the result of part (a), $\boldsymbol{\eta}(\boldsymbol{\xi}, t)$ can be treated as a one-parameter family of canonical transformations (parametrized by t), provided there exists some function g satisfying

$$
\begin{equation*}
\frac{d \xi_{i}}{d t}=\left[\xi_{i}, g\right]_{P B} \tag{96}
\end{equation*}
$$

This condition is seen to be satisfied if g is taken as the Hamiltonian H, for in this case,

$$
\begin{align*}
{\left[\xi_{i}, H\right]_{P B} } & =\frac{\partial \xi_{i}}{\partial \xi_{k}} J_{k j} \frac{\partial H}{\partial \xi_{j}} \tag{97}\\
& =\delta_{i k} J_{k j} \frac{\partial H}{\partial \xi_{j}} \tag{98}\\
& =J_{i j} \frac{\partial H}{\partial \xi_{j}} \tag{99}\\
& =\dot{\xi}_{i} \tag{100}
\end{align*}
$$

where the last equality is obtained via Hamilton's equations. So, taking $g=H$ satisfies the Poisson bracket relation with H acting as the generator of time translations.

