
Theoretical Dynamics September 24, 2010

Homework 3

Instructor: Dr. Thomas Cohen Submitted by: Vivek Saxena

1 Goldstein 8.1

1.1 Part (a)

The Hamiltonian is given by

H(qi, pi, t) = piq̇i − L(qi, q̇i, t) (1)

where all the q̇i’s on the RHS are to be expressed in terms of qi, pi and t. Now,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt (2)

From (1),

dH = pidq̇i + q̇idpi − dL

= pidq̇i + q̇idpi −
(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt

)
= −∂L

∂qi
dqi + q̇idpi +

(
pi −

∂L

∂q̇i

)
dq̇i −

∂L

∂t
dt (3)

Comparing (2) and (3) we get

∂H

∂qi
= −∂L

∂qi
= −ṗi (2nd equality from Hamilton’s equation) (4)

q̇i =
∂H

∂qi
(also Hamilton’s equation) (5)

pi −
∂L

∂q̇i
= 0 (H is not explicitly dependent on q̇i) (6)

−∂L
∂t

=
∂H

∂t
(7)

From (4) and (6) we have

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, . . . , n (8)

which are the Euler-Lagrange equations.
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1.2 Part (b)

L′(p, ṗ, t) = −ṗiqi −H(q, p, t) (9)

= piq̇i −H(q, p, t)− d

dt
(piqi) (10)

= L(q, q̇, t)− d

dt
(piqi) (11)

= L(q, q̇, t)− ṗiqi − piq̇i (12)

So,

dL′ =
∂L′

∂pi
dpi +

∂L′

∂ṗi
dṗi +

∂L′

∂t
dt (13)

= −q̇idpi − qidṗi +
∂L

∂t
dt (from (9)) (14)

Comparing (12) and (13) we get

q̇i = −∂L
′

∂pi
(15)

qi = −∂L
′

∂ṗi
(16)

Thus the equations of motion are

d

dt

(
∂L′

∂ṗi

)
− ∂L′

∂pi
= 0, i = 1, 2, . . . , n (17)

2 Goldstein 8.6

Hamilton’s principle is

δ

∫
Ldt = 0 (18)

or equivalently

δ

∫
2Ldt = 0 (19)

We can subtract the total time derivative of a function whose variation vanishes at the end
points of the path, from the integrand, without invalidating the variational principle. This
is because such a function will only contribute to boundary terms involving the variation
of qi and pi at the end points of the path, which vanish by assumption. Such a function is
piqi. So, the ‘modified’ Hamilton’s principle is

δ

∫ (
2L− d

dt
(piqi)

)
dt = 0 (20)
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Using the Legendre transformation, this becomes

δ

∫
(2piq̇i − 2H − piq̇i − ṗiqi) dt = 0 (21)

=⇒ δ

∫
(2H + ṗiqi − piq̇i) dt = 0 (22)

now,

ṗiqi − piq̇i =
[
q1 . . . qn | p1 . . . pn

]
1×2n

(
0n×n 1n×n
−1n×n 0n×n

)
2n×2n



q̇1
.
.
q̇n
−−
ṗ1
.
.
ṗn


2n×1

(23)

= ηTJη̇ (24)

So (22) becomes

δ

∫ (
2H + ηTJη̇

)
dt = 0 (25)

which is the required form of Hamilton’s principle.

3 Goldstein 8.9

The constraints can be incorporated into the Lagrangian L by defining a “constrained
Lagrangian” Lc, as

Lc(q, q̇, t) = L(q, q̇, t)−
∑
k

λkψk(q, p, t) (26)

Applying Hamilton’s principle, and using the Legendre transformation for L, we get

δ

∫ (
piq̇i −H(q, p, t)−

∑
k

λkψk(q, p, t)

)
dt = 0 (27)

By analogy with the constrained Lagrangian, we can define a “constrained Hamiltonian”
Hc as

Hc(q, p, t) = H(q, p, t) +
∑
k

λkψk(q, p, t) (28)

Since both the terms are functions of qi, pi and t, this is a “good” Hamiltonian. Equation
(27) can then be written as

δ

∫
(piq̇i −Hc(q, p, t)) dt = 0 (29)
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This bears a resemblance to the usual variational principle in Hamiltonian mechanics, for
a Hamiltonian Hc. So the Hamilton equations are

q̇i =
∂Hc

∂pi

ṗi = −∂Hc

∂qi

which become

q̇i =
∂H

∂pi
+
∑
k

λk
∂ψk
∂pi

(30)

−ṗi =
∂H

∂qi
+
∑
k

λk
∂ψk
∂qi

(31)

Time as a canonical variable

If time t is treated as a canonical variable, we define qn+1 = t. By Hamilton’s equations

ṗn+1 = − ∂H

∂qn+1
(32)

= −∂H
∂t

(33)

= −dH
dt

(34)

and

q̇n+1 =
∂H

∂pn+1
(35)

= 1 (since qn+1 = t) (36)

As the Hamiltonian contains terms of the form piq̇i for each coordinate and its canonical
momentum, in order to incorporate the constraint imposed by the inclusion of time as
the (n + 1)th canonical variable, we include a term of the form pn+1q̇n+1 = pn+1 to the
Hamiltonian to set up the constraint. Equivalently, the constraint can be obtained by
integrating equation (34) above, and is given by

H(q1, . . . , qn, qn+1; p1, . . . , pn) + pn+1 = 0 (37)

Hamilton’s principle,

δ

∫
(piq̇i −H)dt = 0 (38)

can be written as

δ

∫
(piq̇i −H)t′dθ = 0 (39)
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where t′ = dt/dθ and θ is some parameter.

Using the constrained form of Hamilton’s equations we get

q̇i = (1 + λ)
∂H

∂pi
, i = 1, 2, . . . n (40)

ṗi = −(1 + λ)
∂H

∂qi
, i = 1, 2, . . . n (41)

q̇n+1 = λ (42)

ṗn+1 = −(1 + λ)
∂H

∂t
= −∂L

∂t
(43)

By regarding H ′ = (1+λ)H as an equivalent Hamiltonian, these equations are the required
(2n+ 2) equations of motion. Also, λ = q̇n+1 = dt/dθ.

4 Goldstein 8.26

4.1 Part (a)

In the given configuration, both springs elongate or compress by the same magnitude.
Suppose q denotes the position of the mass m from the left end. At t = 0, q(0) = a/2,
but the unstretched lengths of both springs are given to be zero. Therefore, the elongation
(compression) of spring k1 is q and the compression (elongation) of spring k2 is q. The
potential energy is

V =
1

2
k1q

2 +
1

2
k2q

2 =
1

2
(k1 + k2)q

2 (44)

The kinetic energy is

T =
1

2
mq̇2 (45)

The Lagrangian is

L = T − V =
1

2
mq̇2 − 1

2
(k1 + k2)q

2 (46)

The momentum canonically conjugate to the coordinate q is

pq =
∂L

∂q̇
= mq̇ (47)

So the Hamiltonian is

H = pq q̇ − L =
1

2
mq̇2 +

1

2
(k1 + k2)q

2 (48)

that is,

H(q, pq, t) =
p2q
2m

+
1

2
(k1 + k2)q

2 (49)

Clearly, the Hamiltonian equals the total energy E. The energy is conserved since,

dE

dt
= mq̇q̈ + (k1 + k2)qq̇ = q̇(−(k1 + k2)q) + (k1 + k2)qq̇ = 0 (50)

where we have used the equation of motion1. In this case, the Hamiltonian is also conserved.

1 d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0 =⇒ mq̈ + (k1 + k2)q = 0
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4.2 Part (b)

Substituting q = Q+b sin(ωt) and q̇ = Q+bω cos(ωt) into the expression for the Lagrangian,
we get

L(Q, Q̇, t) =
1

2
m(Q̇+ bω cos(ωt))2 − 1

2
(k1 + k2)(Q+ b sin(ωt))2 (51)

and the momentum canonically conjugate to the coordinate Q is given by

pQ =
∂L

∂Q̇
= m(Q̇+ bω cos(ωt)) (52)

So the Hamiltonian becomes

H(Q, pQ, t) = pQQ̇− L(Q, Q̇, t) (53)

= m(Q̇+ bω cos(ωt))Q̇− 1

2
m(Q̇+ bω cos(ωt))2 +

1

2
(k1 + k2)(Q+ b sin(ωt))2

=
mQ̇2

2
− mb2ω2

2
cos2(ωt) +

1

2
(k1 + k2)(Q+ b sin(ωt))2

=
p2Q
2m
− pQbω cos(ωt) +

1

2
(k1 + k2)(Q+ b sin(ωt))2 (54)

The Hamiltonian is now explicitly dependent on time, and hence is not conserved, as is
confirmed by the fact that dH/dt 6= 0. The energy is given by

E = T + V =
1

2
(Q̇+ bω cos(ωt))2 +

1

2
(k1 + k2)(Q+ bω sin(ωt))2 (55)

So,

dE

dt
= m(Q̇+ bω cos(ωt))(Q̈− bω2 sin(ωt)) + (k1 + k2)(Q+ b sin(ωt))(Q̇+ bω cos(ωt))

= (Q̇+ bω cos(ωt))(m(Q̈−Bω2 sin(ωt)) + (k1 + k2)(Q+ b sin(ωt)))

= (Q̇+ bω cos(ωt))(mq̈ + (k1 + k2)q) (56)

= 0 (c.f. footnote on prev. page) (57)

Therefore, the energy is conserved, as expected (the energy is still given by T + V , but the
Hamiltonian is not T+V anymore, as the relationship connecting the generalized coordinate
to the cartesian coordinate is now explicitly dependent on time).

5 Goldstein 8.23

5.1 Part (a)

The Lagrangian for the system is

L =
1

2
m(v · v) + eA(r) · v − eV (r) (58)

The canonical momentum is

p =
∂L

∂v
= mv + eA (59)
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So the Hamiltonian is

H = p · v − L (60)

= (mv + eA) · v −
(

1

2
m(v · v) + eA(r) · v − eV (r)

)
=

m

2
v · v + eV (r)

=
(p− eA) · (p− eA)

2m
+ eV (r) (61)

=
1

2m
(p2 − 2ep ·A+ e2A2) + eV (r) (62)

Now,

p ·A = p · 1

2
B × r

=
1

2
B · (r × p) (63)

=
1

2
B · J (64)

where J = r × p denotes the angular momentum. Also,

A2 =
1

4
(B × r) · (B × r)

=
1

4
B2r2 (as B is perpendicular to r) (65)

So the Hamiltonian of equation (58) becomes

H =
p2

2m
− e

2m
B · J +

e2

8m
B2r2 + eV (r) (66)

5.2 Part (b)

Let vlab = (ẋ, ẏ) denote the velocity of the particle in the lab frame, and v′ = (ẋ′, ẏ′)
denote the velocity in the rotating frame. Without loss of generality, we may assume that
motion is confined to the xy-plane. We first derive a relationship between the Hamiltonian
in a rotating frame with that in a non-rotating frame (in this case, the lab frame). The
coordinates are related by

x = x′ cos(ωt)− y′ sin(ωt) (67)

y = x′ sin(ωt) + y′ cos(ωt) (68)

Here, it has been assumed that the rotation is counterclockwise, i.e. ω > 0 for counter-
clockwise rotation. So the velocity components are related by

ẋ = ẋ′ cos(ωt)− ẏ′ sin(ωt)− ω(x′ sin(ωt) + y′ cos(ωt)) (69)

y = ẋ′ sin(ωt) + ẏ′ cos(ωt)− ω(x′ cos(ωt)− y′ sin(ωt)) (70)
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Therefore

vlab
2 = ẋ2 + ẏ2 = ẋ′2 + ẏ′2 + 2ω(xẏ − ẋy) + ω2r2 (71)

The Lagrangian in the lab frame is

L =
1

2
mvlab

2 − eV (r) (72)

=
1

2
m(ẋ′2 + ẏ′2) +mω(x′ẏ′ − ẋ′y′) +

1

2
mω2r2 − eV (r) (73)

The momenta canonically conjugate to x and y in the rotating system are

px′ =
∂L

∂ẋ′
= m(ẋ′ − ωy′) (74)

py′ =
∂L

∂ẏ′
= m(ẏ′ + ωx′) (75)

So the Hamiltonian in the rotating frame is

H = px′ ẋ
′ + py′ ẏ

′ − L (76)

=
p2x′ + p2y′

2m
+ ω(y′px′ − x′py′) + eV (r) (77)

=
p2x′ + p2y′

2m
− J ′zω + eV (r) (78)

where J ′z denotes the angular momentum in the z-direction (direction of ω) as measured in
the rotating frame. This means that for counterclockwise rotation along the z-axis,

Hrotating frame = Hlab frame − ωJz (79)

This is the general relationship between Hamiltonians in the lab frame and rotating frame.

For this problem, from equation (62) above, we have

Hlab frame =
p2

2m
− eB

2m
J +

e2

8m
B2r2 + eV (r) (80)

as B = Bẑ and J = Jzẑ = J ẑ. So, the Hamiltonian in the rotating frame is

Hrotating frame =
p2

2m
−
(
ω +

eB

2m

)
Jz +

e2

8m
B2r2 + eV (r) (81)

It is interesting to note that if ω = ωc = − eB
2m , then the term linear in the magnetic field

vanishes. In this problem, it is given that

ω = −eB
m

(82)

which is twice the frequency ωc. So, in this case, the Hamiltonian becomes

Hrotating frame =
p2

2m
+
eB

2m
Jz +

e2

8m
B2r2 + eV (r) (83)
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6 Problem 1

6.1 Part (a)

The subscript PB is suppressed for clarity.

[Li, Lj ]PB = [εiαβxαpβ, εjγδxγpδ]

= εiαβεjγδ[xαpβ, xγpδ]

= εiαβεjγδ (xα[pβ, xγpδ] + [xα, xγpδ]pβ) (as [A,BC]PB = B[A,C]PB + [A,B]PBC)

= εiαβεjγδ (xα[pβ, xγ ]pδ + xαxγ [pβ, pδ] + [xα, xγ ]pδpβ + xγ [xα, pδ]pβ)

= εiαβεjγδ(−δβγxαpδ + δαδxγpβ)

= εiαβεjβδ(−xαpδ) + εiαβεjγαxγpβ

= εiαβεjδβxαpδ − εiβαεjγαxαpβ
= (δijδαδ − δiδδjα)xαpδ − (δijδβγ − δiγδjβ)xγpβ

= (δijxαpα − xjpi)− (δijxβpβ − xipj)
= xipj − xjpi

Now, [L1, L2]PB = x1p2 − x2p1 = L3, [L1, L3]PB = x1p3 − x3p1 = −L2, [L3, L2]PB =
x3p2 − x2p3 = ε321 − L1, etc. So, xipj − xjpi = εijkLk.

Hence, [Li, Lj ]PB = εijkLk.

6.2 Part (b)

For each i = 1, 2, 3,

[Li, L
2]PB = [Li, LjLj ] (sum over j)

= Lj [Li, Lj ] + [Li, Lj ]Lj

= Lj(εijkLk) + (εijkLk)Lj

= 2εijkLjLk

= 0 (as εijk is antisymmetric under j ↔ k, while LjLk is symmetric.)

So,

[L, L2]PB = êi[Li, L
2]PB = 0 (84)

6.3 Part (c)

For each i = 1, 2, 3,

[Li, f(r)]PB =
∂Li
∂xα

∂f(r)

∂pα
− ∂Li
∂pα

∂f(r)

∂xα
(85)

Now, r =
√
xixi and Li = εijkxjpk, so

∂f

∂xα
=

∂r

∂xα

∂f

∂r
=
xα
r

∂f

∂r
(86)

∂f

∂pα
= 0 (87)
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So,

[Li, f(r)]PB = −∂Li
∂pα

∂f(r)

∂xα

= −xα
r

∂(εijkxjpk)

∂pα

∂f(r)

∂r

= −
εijkxαxjδα,k

r

∂f

∂r

= −
εijkxjxk

r

∂f

∂r

= −(r × r)i
r

∂f

∂r
= 0 (88)

7 Problem 2

7.1 Part (a)

[ξi, ξj ] =
∂ξi
∂ηα

Jαβ
∂ξj
∂ηβ

(89)

So,

d

dε
[ξi, ξj ] =

d

dε

(
∂ξi
∂ηα

Jαβ
∂ξj
∂ηβ

)
=

d

dε

(
∂ξi
∂ηα

)
Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ
d

dε

(
∂ξj
∂ηβ

)
=

∂

∂ηα

(
dξi
dε

)
Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ
∂

∂ηβ

(
dξj
dε

)
=

∂

∂ηα
([ξi, g]) Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ
∂

∂ηβ
([ξj , g])

=
∂

∂ηα

(
∂ξi
∂ηγ

Jγδ
∂g

∂ηδ

)
Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ
∂

∂ηβ

(
∂ξj
∂ηω

Jωθ
∂g

∂ηθ

)
=

(
∂2ξi

∂ηα∂ηγ
Jγδ

∂g

∂ηδ
+
∂ξi
∂ηγ

Jγδ
∂2g

∂ηαηδ

)
Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ

(
∂2ξj

∂ηβ∂ηω
Jωθ

∂g

∂ηθ
+
∂ξj
∂ηω

Jωθ
∂2g

∂ηβ∂ηθ

)
(90)

Now, for ε = 0, ξ = η, so the second order terms

∂2ξi
∂ηα∂ηγ

∣∣∣∣
ε=0

,
∂2ξj

∂ηβ∂ηω

∣∣∣∣
ε=0
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equal zero. So,

d

dε
[ξi, ξj ]

∣∣∣∣
ε=0

=
∂ξi
∂ηγ

Jγδ
∂2g

∂ηα∂ηδ
Jαβ

∂ξj
∂ηβ

+
∂ξi
∂ηα

Jαβ
∂ξj
∂ηω

Jωθ
∂2g

∂ηβ∂ηθ
(91)

=
∂ξi
∂ηα

Jαβ
∂2g

∂ηγ∂ηβ
Jγδ

∂ξj
∂ηδ

+
∂ξi
∂ηα

Jαβ
∂2g

∂ηγ∂ηβ
Jδγ

∂ξj
∂ηδ

(92)

which is obtained by switching γ ↔ α, δ ↔ β in the first term and θ ↔ γ, ω ↔ δ in the
second term. As J is antisymmetric, Jδγ = −Jγδ. So,

d

dε
[ξi, ξj ]

∣∣∣∣
ε=0

=
∂ξi
∂ηα

Jαβ
∂2g

∂ηγ∂ηβ
Jγδ

∂ξj
∂ηδ
− ∂ξi
∂ηα

Jαβ
∂2g

∂ηγ∂ηβ
Jγδ

∂ξj
∂ηδ

(93)

= 0 (94)

So upto O(ε2), we have d[ξi, ξj ]/dε = 0 and so [ξi, ξj ] is constant up to O(ε2). As [ξi, ξj ]|ε=0 =
[ηi, ηj ] = Jij , we have [ξi, ξj ] = Jij upto O(ε2).

So, ξ is a canonical transformation upto O(ε2).

7.2 Part (b)

First of all,
η(ξ, 0) = ξ (95)

because at t = 0, the canonical coordinates overlap in phase space. So, using the result
of part (a), η(ξ, t) can be treated as a one-parameter family of canonical transformations
(parametrized by t), provided there exists some function g satisfying

dξi
dt

= [ξi, g]PB (96)

This condition is seen to be satisfied if g is taken as the Hamiltonian H, for in this case,

[ξi, H]PB =
∂ξi
∂ξk

Jkj
∂H

∂ξj
(97)

= δikJkj
∂H

∂ξj
(98)

= Jij
∂H

∂ξj
(99)

= ξ̇i (100)

where the last equality is obtained via Hamilton’s equations. So, taking g = H satisfies the
Poisson bracket relation with H acting as the generator of time translations.
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