
Lecture 22 Highlights 
 
 We now consider the problem of how an atom makes a transition from one state 
to another when it is stimulated (perturbed) by an electromagnetic field.  Consider a 
hydrogen atom in its 1s ground state.  The light exerts a force on the electron dominated 
by the electric field, )cos(ˆ0 txEE x ω=

r
, which is arbitrarily assumed to be polarized along 

the x-direction.  We assume that the wavelength of the (visible) light (λ ~ 500 nm) is 
much greater than the size of the atom, which is the scale of the Bohr diameter ~ 0.1 nm.  
Therefore the atom experiences a uniform-in-space electric field, as written above, to 
good approximation. 
 The potential associated with the (conservative) electric force is: 
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),( .  We treat this potential 

as the time-dependent perturbation.  Assume that the hydrogen atom is left alone in the 1s 
state for all times before t=0.  At t=0 the light turns on and the perturbation begins.  At 
time t the light is turned off.  Now the question is which state does the hydrogen atom 
find itself in, and with what probability?  This is a job for time-dependent perturbation 
theory. 
 The transition probability can be calculated from the transition amplitude rate 
from state n to state j: 
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In this case we get: 

 [ ] xdxxxee
ieE

a nj
tEEitEEix

nj
njnj 3*/)(/)(0 )()(

2
0000 rr

h
& hhhh ψψωω ∫−−+− +

−
=  

The last piece is the “dipole matrix element” xdxxxx njjn
3* )()( rr ψψ∫= , which will give 

rise to “selection rules” for the transitions. 
 Integrating up the transition amplitude rate gives the transition amplitude: 

jn
nj

tEEi

nj

tEEi
x

nj x
EE

e
EE

eeE
ta

njnj

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

+
+−

−
=

−−+−

ωω

ωω

hh

hhhh

00

/)(

00

/)(
0

0000

11
2

)(  

This quantity has two terms that get very large when .  The 
system starts in state n and makes a transition to state j.  Hence the second term 
corresponds to absorption of energy 
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ωh by the atom in moving from state n to state j.  
The first term corresponds to the atom starting in a higher energy state n and giving up 
energy ωh to the electromagnetic field and going into lower energy state j.  This process 
is known as stimulated emission, and will be investigated in more detail later. 

We focus on the case of absorption of energy by the atom from the 
electromagnetic field , which arises from the second term.  After taking 

the absolute square and using the trigonometric identity
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sin21cos 2 zz −= , we get the 

absorption probability: 
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As a function of time this transition probability is sinusoidal.  It increases initially 
from zero, as we would expect.  However it returns to zero periodically in intervals of 

time given by ( )ω
π
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.  This is the phenomenon of Rabi flopping (Fig. 9.1), in 

which the system periodically has probability zero of having made a transition to the 
upper state, despite the fact that the perturbation has been acting for some time. 

As a function of frequency offset (detuning) from resonant 

absorption,
h

00
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−ω , the transition probability (for fixed duration t) is a sinc^2-like 

function (Fig. 9.2).  Recall that
x

xx sin)(sinc ≡ .  This means that there is non-zero 

probability for the atom to make the transition even though the frequency does not 
exactly satisfy the condition .  Because the perturbation is on for a finite 
time interval, there is an uncertainty in the frequency of the light, and this uncertainty 
satisfies the energy-time uncertainty relation:
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