The rules which apply to the familiar Cartesian linear space may be generalized to a more exotic function vector space, such as the space of $\operatorname{sines}(\sin (n x))$. In both spaces, any vector in the space may be constructed from a set of basis vectors. In the 3-D Cartesian position vector space, these are typically represented by $\left|e_{1}\right\rangle,\left|e_{2}\right\rangle$, and $\left|e_{3}\right\rangle$ which can be any orthonormal set of vectors which span the space, but commonly $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. The set of sines has an analogous set of basis vectors, $\left|e_{n}\right\rangle=\frac{1}{\sqrt{\pi}} \sin (n \theta)$. This is an infinite dimensional basis (n can be any integer!), but again, any function can be represented as these basis vectors. [better: as a sum over these basis vectors]

Orthonormality isn't necessary in constructing a basis, but it is convenient.
Orthonormality is the condition that, for some vectors [better: in the basis] $\left|e_{\mathrm{n}}\right\rangle$ and $\left|e_{\mathrm{m}}\right\rangle$, $\left\langle e_{n} \mid e_{m}\right\rangle=\delta_{n m}$. In Cartesian space, $\left|e_{1}\right\rangle$ and $\left|e_{2}\right\rangle$ are obviously perpendicular in the above basis and $\left\langle e_{1} \mid e_{1}\right\rangle$ is, again, clearly 1.

When generalizing to a function space, though, the inner product rules become more complicated. $<e_{\mathrm{n}} \mid e_{\mathrm{m}}>$ is now equivalent to

$$
\int_{0}^{2 \pi} d x\left(\frac{1}{\sqrt{\pi}} \sin (n x)\right)^{*}\left(\frac{1}{\sqrt{\pi}} \sin (m x)\right)= \begin{cases}1 & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

and the normalization condition is

$$
\int_{0}^{2 \pi} d x\left|A_{n} \sin (n x)\right|^{2}=1
$$

where A_{n} can be solved for to equal $1 / \sqrt{\pi}$.
In Cartesian space, completeness is the concept that any vector in the space may be represented by a sum of the basis vectors times some constants:

$$
|v\rangle=\sum_{n=1}^{3} a_{n}\left|e_{n}\right\rangle
$$

similarly, in function space, a vector

$$
|v\rangle=\sum_{n=1}^{\infty} b_{n}\left|e_{n}\right\rangle
$$

the only difference is the summation, to three versus to infinity, and of course the different bases.

Function space is remarkably similar to Cartesian 3-D space, except that some operations must be redefined, such as the inner product, to make sense. Dirac notation emphasizes the similarities: the inner product is still written the same way. However, when evaluating it, the difference between the two spaces become more pronounced.

