PHYS 373 (Fall 2015):
Mathematical Methods for Physics 11

Summary of topics/formulae for Final exam

Chapter 7 of Boas (Fourier Series and Transforms)

1. General Fourier series: a function f(z) with period 2/ can be expanded as
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where the Fourier coefficients are given by

nmwx
a, = / f(x) cos —d;E
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b, = /f sin—dw

c, = g/_lf(x)e_imm/ldx

2. Special Fourier series: we have
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if £(x) is odd, { bn =7 Jo [(x)sin 2=de

a, =0

an =32 [5° f(x) cos Edx
; ; n = 7Jo
if f(z) is even, { by =0

3. Paserval’s theorem for Fourier series:
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The average of |f(x)|? (over a period) = (§ao) + 3 ; a? + —i—§ ; b;
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4. General Fourier transform

where
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5. Special Fourier transform: for an odd function, we have

fs(x) = \/2/ gs(a) sin ax do
T™Jo
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gs(o) = \/i/ fs(z)sinax dx
T Jo

Similarly, for an even function:
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fe(z) = \/i/ ge(a) cos ax da
T Jo
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ge(a) = \/i/ fe(x) cos ax dx
T Jo

6. Paserval’s theorem for Fourier transform:
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Chapter 3 of Boas (Linear Algebra)
1. n-dimensional vector-space:
A.B (inner product) = ZA,-Bi

A (norm) = VA.A
A and B are orthogonal if A.B =0

2. vector-space of functions on a < z < b:

b
Inner product of A(z) and B(z) =

J
Norm of A(z) = \/

A(z) and B(x) are orthogonal if /

A*(2)
[
bA*(

B(z)dx
z)B(x)dr =0

JA(x)dx

3. Gram-Schmidt method for making a basis (A, B, C...) orthonormal:

A

e, = —

! A
e, = mnormalized [B — (e1.B) el}

e; = normalized [c — (e1.C)e; — (€,.C) 3]

(12)

(13)



Chapter 12 of Boas (Series Solutions of Differential Equations)

1. Series method for solving (linear) ordinary differential equations (ODE): assume a
solution of the form (with a’s being coefficients to be found)

y = Zanx" (27)
n=0
giving
T Znanx”_l (28)
n=0
y' = n(n — 1)a,z"? (29)
n=0

Plug the above series into each term of the ODE. Find the total coefficient of each
power of z on each side of ODE and equate them (again, for each power of z). This
will give the higher a coefficients in terms of lower ones.

2. Legendre’s equation:
(1-2?)y" =22y +1(l+1)y = 0 (30)

has a solutions for each integer [ (chosen to be non-negative) which is called the Leg-
endre polynomial, Pp(x) defined with

P(1) =1 (31)
For example,

Py(z) =1, Pi(z) =z, Px)=3(32>—1), P3(x) =3 (52 — 3x) ... (32)

3. Rodrigues’ formula for Legendre polynomials
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sz @ = 1) (33)
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4. Generating function for Legendre polynomials:

~1/2

®(z,h) = (L—2zh+h*) ", |n <1 (34)

= Y WP(x) (35)



5. Recursion relations for Legendre polynomials:

IP(z) = (20— 1)zPa(x) — (1= 1)F-2(2), (36)
vP(x) - Pz () = 1B(x), (37)
F/(z) —xP (z) = 1P (z), (38)
(1- ) Fl(z) = IPi(z) — laFi(x), (39)
I+ 1)A(r) = Fia(r) = Fy(2), (40)
(1-2%) Fl\(a) = lxPia(z) — IPi(a) (41)
6. Orthogonality of Legendre polynomials:
1
/ P(z)Py(x)dr = 0, unlessl=m (42)
-1
7. Normalization of Legendre polynomials:
1
2 2
P, = — 4
/_1[ Hz)] 20 41 (43)
(44)
8. A function defined over the interval (—1,1) can be expanded in a Legendre series
> aPi() (45)
1=0
(46)
where
2m +1
o= f()() (47)
9. Associated Legendre functions:
Pr) = (1—2%)" Lop) (15)
: dz™
satisfy the equation
, 2
N " / . _
(1—22)y — 2ay + [l(z+1) 1_:62}3/ 0 (49)

For each m, they a set of orthogonal functions on (—1, 1), with normalization:

/_11 [le<x)rdx - zlilgigz (50)
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Bessel equation
2y +ay + (27— pP)y = 0

has solutions (Bessel functions):

B > (—1)" 2\ 2n+p
hlw) =) T(n+ D0(n+1+p) (5)

n=0
and
cos(mp)J,(x) — J_p(x
Nota) = ) = ot
Asymptotic values:
Jo(0) = 1
Jnz0(0) =

Jn=0,1,2...(00) =0

Recursion relations for Bessel functions

Llea@)] = eyl
Lra@)] = —a Pyt

) = L@
Tyal@) = (@) = 271(x)
)

= Lh@) + Jpala) =

v Ip(x) = Jpy1 ()

Other equations with Bessel function solutions

2 _p202

— Qay’ + [ (bcsvcfl)2 + -

1
Yy + ]y = 0

2
has the solution
y = 2°Z,(bx°), where Z =J, N
and
y = Jp(Kz)and N,(Kz)
satisfy the equation

z(zy) + (K*2* —p*)y = 0

(51)

(53)

(62)

(63)

(64)

(65)



14. Orthogonality of Bessel functions:
1 .
0 ifa#p0
xJy(ax)],(Br) = i ’ 66
/0 pl00) Sy (Fr) { L2 (0) = 12 4(0) = 41%(a) ifa=5 (OO

where a and /3 are zeroes of J,(z).

Chapter 13 of Boas (Partial Differential Equations)
1. Laplace equation in two-dimensional rectangular/Cartesian coordinates (for example,
for steady-state temperature):
2 2

B, )
=T B -
57 (:v,y)+ay2 (z,y) 0 (67)

has basis functions (i.e., general solution is a suitable combination of these):

ek sin ky sin kx ety
T(z,y) = { e~k }{ cos ky "' coskx ek (68)
2. Diffusion equation in one dimension
0%u 1 Ou
- - - -z 69
0x? o? Ot (69)

has basis functions

coskx

- e—k2a2t{ sin kx } (70)

3. Schroedinger equation in one dimension for a free particle (i.e., no potential):

h? 5%V oV
S Nl 1
om 0z | ot (1)
has basis functions
U sin kx o —iBt/h (72)
cos kx
4. Wave equation in circular coordinates:

10 ([ 0z 1 0%z 1 0%z
-—— |r=— = = —— 73
ror <T87“) r2 062 v? Ot? (73)

has basis functions:
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5. Laplace equation in spherical coordinates

10 ( ,0u 1 o (. Ou 1 0%
ﬁé@%ﬁ)*ﬁ@@@(“ﬂg>+ﬁ;mﬁﬁ =0 (75)

has basis functions (where [ is a non-negative integer, with — < m < +1)

o= {2 b { e (70

cos mao

Chapter 14 of Boas (Functions of a Complex Variable)

1. Basics of complex-valued functions of complex variable

f(z) = flr+iy) =u(r,y)+iv(r,y) (77)
fz) =% BN % (78)

2. If f(z) is analytic in a region (i.e., has a unique derivative at every point), then

ou ov
ov ou
- oy (80)

(Cauchy-Reimman conditions) and it’s converse: if u(z,y) and v(x,y) satisfy these
conditions, then f(z) = u + v is analytic.

3. If f(2) is analytic in a region R, then it has derivatives of all orders at points inside R
and thus it can be expanded in a Taylor series about any point zy in K. This power
series converges inside circle C' about zp that extends to the nearest singularity point
(i.e., C just touches the boundary of R).

4. If f(2) = u+iv is analytic in a region, then u and v satisfy (two-dimensional) Laplace’s
equation in the region. And, conversely, any function u (or v) satisfying Laplace’s
equation is the real (or imaginary) part of an analytic function f(z).

5. Cauchy’s theorem: if f(z) is analytic inside and on a closed curve C, then

/f(z)dz = 0, around C' (81)

6. Cauchy’s integral formula: if f(z) is analytic inside and on a closed curve C', then

I

211 Z—a

fla) =

dz, around C (82)

where z = a is a point inside C.



7. Laurent series: Let (7 and Cs be two circles with center at zy. If f(z) is an anlaytic

10.

function in the region R between C 5, then it can be expanded in a convergent series
in R

f(z) = ao+a1(2—zO)+a2(z—zo)2—|—...+ +
associated with which are the following definitions:

(i) If all the b’s are zero, then f(z) is analytic at z = zy (regular point);

(ii) If b, # 0, but all the subsequent b’s are zero, then f(z) is said to have a pole of
order n a z = zy. If n =1 here, then f(z) has a simple pole at z = z;

(iii) If there are infinite number of b’s which are different than zero, then f(z) has an
essential singularity at z = zp;

(iv) The coefficient by of 1/ (z — 2p) is called the residue of f(z) at z = 2.

Residue theorem:
/f(z)dz (around C') = 2mi. (sum of residues of f(z)inside C) (84)

where we go counter-clockwise around C'.

Methods of finding residues of f(z):
(A) coefficient b; in Laurent series about z = z;

(B) Simple pole:

Riz) = =% (2= 2) f(2) (85)
and if f(z) = g(z)/h(z), then
g(20) .. [ if g(20) = finite const.
R(z) = W (z0) if { héézo) =0, W (z) #0 (86)

(C) Multiple poles: multiply f(z) by (2 — 29)™, where m is an integer > n (order
of pole), differentiate the result (m — 1) times, divide by (m — 1)!, and evaluate the
resulting expression at z = z.

Definite integrals using residue theorem:

(i) Change of variables;



(ii) If P(z) and Q(x) are polynomials with degree of () > degree of P+ 2 and if () has
no real zeroes, then

/_ Z gg; = 2mi. (sum of residues of ggz; in upper half—plane) (87)

(iii) If P(z) and Q(z) are polynomials with degree of ) > degree of P + 1 and if @
has no real zeroes, then

~ P(zx) | , ( . P(2) ims . )
——=e"* = 2mi. | sum of residues of ——=¢e""* in upper half-plane | (88
/_oo Q(z) Q(2) (88)

where m > 0.

(iv) Poles on boundary:

/f(z)dz (around C') = 2mi. (sum of residues at simple poles inside C+

1
5 sum of residues of poles on the boundary) (89)

(v) Branch cuts: for integrals involvong fractional powers (or logarithm) of x (and
thus z), we have to choose contour such that we stay on one branch of the fractional
power (say, angle of z between 0 and 27) so that the function is single-valued.

(vi) Argument principle:

. 1
N-P =217 %dz (around C') = %@c (90)

where N and P are the number of zeroes and poles, respectively, of f(z) inside C' and
O¢ is the change in angle of f(z) around C.

11. Nature of f(Z) at Z = oo: it is a pole of order 2 if f (1/z) is the same at z = 0 etc.

12. Residue at infinity:

(residue of f(Z)at Z = o0) = — (residue of lf (1> at z = 0) (91)
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