PHYS 373 (Fall 2015):
 Mathematical Methods for Physics II
 Summary of topics/formulae for Final exam

Chapter 7 of Boas (Fourier Series and Transforms)

1. General Fourier series: a function $f(x)$ with period $2 l$ can be expanded as

$$
\begin{align*}
f(x) & =\frac{a_{0}}{2}+\sum_{1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \tag{1}\\
& =\sum_{-\infty}^{\infty} c_{n} e^{i n \pi x / l} \tag{2}
\end{align*}
$$

where the Fourier coefficients are given by

$$
\begin{align*}
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \tag{3}\\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x \tag{4}\\
& c_{n}=\frac{1}{2 l} \int_{-l}^{l} f(x) e^{-i n \pi x / l} d x \tag{5}
\end{align*}
$$

2. Special Fourier series: we have

$$
\begin{align*}
& \text { if } f(x) \text { is odd, }\left\{\begin{array}{l}
b_{n}=\frac{2}{l} \int_{0}^{\infty} f(x) \sin \frac{n \pi x}{l} d x \\
a_{n}=0
\end{array}\right. \tag{6}\\
& \text { if } f(x) \text { is even, }\left\{\begin{array}{l}
a_{n}=\frac{2}{l} \int_{0}^{\infty} f(x) \cos \frac{n \pi x}{l} d x \\
b_{n}=0
\end{array}\right. \tag{7}
\end{align*}
$$

3. Paserval's theorem for Fourier series:

$$
\text { The average of } \begin{align*}
|f(x)|^{2} \text { (over a period) } & =\left(\frac{1}{2} a_{0}\right)^{2}+\frac{1}{2} \sum_{1}^{\infty} a_{n}^{2}++\frac{1}{2} \sum_{1}^{\infty} b_{n}^{2} \tag{8}\\
& =\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2} \tag{9}
\end{align*}
$$

4. General Fourier transform

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} g(\alpha) e^{i \alpha x} d \alpha \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \alpha x} d x \tag{11}
\end{equation*}
$$

5. Special Fourier transform: for an odd function, we have

$$
\begin{align*}
& f_{s}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} g_{s}(\alpha) \sin \alpha x d \alpha \tag{12}\\
& g_{s}(\alpha)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{s}(x) \sin \alpha x d x \tag{13}
\end{align*}
$$

Similarly, for an even function:

$$
\begin{align*}
& f_{c}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} g_{c}(\alpha) \cos \alpha x d \alpha \tag{14}\\
& g_{c}(\alpha)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{c}(x) \cos \alpha x d x \tag{15}
\end{align*}
$$

6. Paserval's theorem for Fourier transform:

$$
\begin{equation*}
\int_{-\infty}^{\infty}|g(\alpha)|^{2} d \alpha=\int_{-\infty}^{\infty} \frac{1}{2 \pi}|f(x)|^{2} d x \tag{17}
\end{equation*}
$$

Chapter 3 of Boas (Linear Algebra)

1. n-dimensional vector-space:

$$
\begin{align*}
\mathbf{A . B} \text { (inner product) } & =\sum_{1}^{n} A_{i} B_{i} \tag{18}\\
A(\text { norm }) & =\sqrt{\mathbf{A} \cdot \mathbf{A}} \tag{19}\\
\mathbf{A} \text { and } \mathbf{B} \text { are orthogonal } & \text { if } \mathbf{A} \cdot \mathbf{B}=0 \tag{20}
\end{align*}
$$

2. vector-space of functions on $a \leq x \leq b$:

$$
\begin{align*}
\text { Inner product of } A(x) \text { and } B(x) & =\int_{a}^{b} A^{*}(x) B(x) d x \tag{21}\\
\text { Norm of } A(x) & =\sqrt{\int_{a}^{b} A^{*}(x) A(x) d x} \tag{22}\\
A(x) \text { and } B(x) \text { are orthogonal } & \text { if } \int_{a}^{b} A^{*}(x) B(x) d x=0 \tag{23}
\end{align*}
$$

3. Gram-Schmidt method for making a basis (A, B, C...) orthonormal:

$$
\begin{align*}
& \mathbf{e}_{1}=\frac{\mathbf{A}}{A} \tag{24}\\
& \mathbf{e}_{2}=\text { normalized }\left[\mathbf{B}-\left(\mathbf{e}_{1} \cdot \mathbf{B}\right) \mathbf{e}_{1}\right] \tag{25}\\
& \mathbf{e}_{3}=\text { normalized }\left[\mathbf{c}-\left(\mathbf{e}_{1} \cdot \mathbf{C}\right) \mathbf{e}_{1}-\left(\mathbf{e}_{2} \cdot \mathbf{C}\right) \mathbf{e}_{2}\right] \tag{26}
\end{align*}
$$

Chapter 12 of Boas (Series Solutions of Differential Equations)

1. Series method for solving (linear) ordinary differential equations (ODE): assume a solution of the form (with a 's being coefficients to be found)

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{27}
\end{equation*}
$$

giving

$$
\begin{align*}
y^{\prime} & =\sum_{n=0}^{\infty} n a_{n} x^{n-1} \tag{28}\\
y^{\prime \prime} & =\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \tag{29}
\end{align*}
$$

Plug the above series into each term of the ODE. Find the total coefficient of each power of x on each side of ODE and equate them (again, for each power of x). This will give the higher a coefficients in terms of lower ones.
2. Legendre's equation:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0 \tag{30}
\end{equation*}
$$

has a solutions for each integer l (chosen to be non-negative) which is called the Legendre polynomial, $P_{L}(x)$ defined with

$$
\begin{equation*}
P_{l}(1)=1 \tag{31}
\end{equation*}
$$

For example,

$$
\begin{equation*}
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \ldots \tag{32}
\end{equation*}
$$

3. Rodrigues' formula for Legendre polynomials

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \tag{33}
\end{equation*}
$$

4. Generating function for Legendre polynomials:

$$
\begin{align*}
\Phi(x, h) & =\left(1-2 x h+h^{2}\right)^{-1 / 2},|h|<1 \tag{34}\\
& =\sum_{l=0}^{\infty} h^{l} P_{l}(x) \tag{35}
\end{align*}
$$

5. Recursion relations for Legendre polynomials:

$$
\begin{align*}
l P_{l}(x) & =(2 l-1) x P_{l-1}(x)-(l-1) P_{l-2}(x), \tag{36}\\
x P_{l}^{\prime}(x)-P_{l-1}^{\prime}(x) & =l P_{l}(x), \tag{37}\\
P_{l}^{\prime}(x)-x P_{l-1}^{\prime}(x) & =l P_{l-1}(x), \tag{38}\\
\left(1-x^{2}\right) P_{l}^{\prime}(x) & =l P_{l-1}(x)-l x P_{l}(x), \tag{39}\\
(2 l+1) P_{l}(x) & =P_{l+1}^{\prime}(x)-P_{l-1}^{\prime}(x), \tag{40}\\
\left(1-x^{2}\right) P_{l-1}^{\prime}(x) & =l x P_{l-1}(x)-l P_{l}(x) \tag{41}
\end{align*}
$$

6. Orthogonality of Legendre polynomials:

$$
\begin{equation*}
\int_{-1}^{1} P_{l}(x) P_{m}(x) d x=0, \quad \text { unless } l=m \tag{42}
\end{equation*}
$$

7. Normalization of Legendre polynomials:

$$
\begin{equation*}
\int_{-1}^{1}\left[P_{l}(x)\right]^{2}=\frac{2}{2 l+1} \tag{43}
\end{equation*}
$$

8. A function defined over the interval $(-1,1)$ can be expanded in a Legendre series

$$
\begin{equation*}
f(x)=\sum_{l=0}^{\infty} c_{l} P_{l}(x) \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{m}=\frac{2 m+1}{2} \int_{-1}^{1} f(x) P_{l}(x) d x \tag{47}
\end{equation*}
$$

9. Associated Legendre functions:

$$
\begin{equation*}
P_{l}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{l}(x) \tag{48}
\end{equation*}
$$

satisfy the equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left[l(l+1)-\frac{m^{2}}{1-x^{2}}\right] y=0 \tag{49}
\end{equation*}
$$

For each m, they a set of orthogonal functions on $(-1,1)$, with normalization:

$$
\begin{equation*}
\int_{-1}^{1}\left[P_{l}^{m}(x)\right]^{2} d x=\frac{2}{2 l+1} \frac{(l+m)!}{(l-m)!} \tag{50}
\end{equation*}
$$

10. Bessel equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \tag{51}
\end{equation*}
$$

has solutions (Bessel functions):

$$
\begin{equation*}
J_{p}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+1+p)}\left(\frac{x}{2}\right)^{2 n+p} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{p}(x)=\frac{\cos (\pi p) J_{p}(x)-J_{-p}(x)}{\sin \pi p} \tag{53}
\end{equation*}
$$

11. Asymptotic values:

$$
\begin{align*}
J_{0}(0) & =1 \tag{54}\\
J_{n \neq 0}(0) & =0 \tag{55}\\
J_{n=0,1,2 \ldots}(\infty) & =0 \tag{56}
\end{align*}
$$

12. Recursion relations for Bessel functions

$$
\begin{align*}
\frac{d}{d x}\left[x^{p} J_{p}(x)\right] & =x^{p} J_{p-1}(x) \tag{57}\\
\frac{d}{d x}\left[x^{-p} J_{p}(x)\right] & =-x^{-p} J_{p+1}(x) \tag{58}\\
J_{p-1}(x)+J_{p+1}(x) & =\frac{2 p}{x} J_{p}(x) \tag{59}\\
J_{p-1}(x)-J_{p+1}(x) & =2 J_{p}^{\prime}(x) \tag{60}\\
J_{p}^{\prime}(x) & =-\frac{p}{x} J_{p}(x)+J_{p-1}(x)=\frac{p}{x} J_{p}(x)-J_{p+1}(x) \tag{61}
\end{align*}
$$

13. Other equations with Bessel function solutions

$$
\begin{equation*}
y^{\prime \prime}+\frac{1-2 a}{x} y^{\prime}+\left[\left(b c x^{c-1}\right)^{2}+\frac{a^{2}-p^{2} c^{2}}{x^{2}}\right] y=0 \tag{62}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
y=x^{a} Z_{p}\left(b x^{c}\right), \text { where } Z=J, N \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
y=J_{p}(K x) \text { and } N_{p}(K x) \tag{64}
\end{equation*}
$$

satisfy the equation

$$
\begin{equation*}
x\left(x y^{\prime}\right)^{\prime}+\left(K^{2} x^{2}-p^{2}\right) y=0 \tag{65}
\end{equation*}
$$

14. Orthogonality of Bessel functions:

$$
\int_{0}^{1} x J_{p}(\alpha x) J_{p}(\beta x)= \begin{cases}0 & \text { if } \alpha \neq \beta \tag{66}\\ \frac{1}{2} J_{p+1}^{2}(\alpha)=\frac{1}{2} J_{p-1}^{2}(\alpha)=\frac{1}{2} J_{p}^{\prime 2}(\alpha) & \text { if } \alpha=\beta\end{cases}
$$

where α and β are zeroes of $J_{p}(x)$.

Chapter 13 of Boas (Partial Differential Equations)

1. Laplace equation in two-dimensional rectangular/Cartesian coordinates (for example, for steady-state temperature):

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} T(x, y)+\frac{\partial^{2}}{\partial y^{2}} T(x, y)=0 \tag{67}
\end{equation*}
$$

has basis functions (i.e., general solution is a suitable combination of these):

$$
T(x, y)=\left\{\begin{array}{c}
e^{k x} \tag{68}\\
e^{-k x}
\end{array}\right\}\left\{\begin{array}{c}
\sin k y \\
\cos k y
\end{array}\right\} \text { or }\left\{\begin{array}{c}
\sin k x \\
\cos k x
\end{array}\right\}\left\{\begin{array}{c}
e^{k y} \\
e^{-k y}
\end{array}\right\}
$$

2. Diffusion equation in one dimension

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u}{\partial t} \tag{69}
\end{equation*}
$$

has basis functions

$$
u=e^{-k^{2} \alpha^{2} t}\left\{\begin{array}{c}
\sin k x \tag{70}\\
\cos k x
\end{array}\right\}
$$

3. Schroedinger equation in one dimension for a free particle (i.e., no potential):

$$
\begin{equation*}
-\frac{h^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i h \frac{\partial \Psi}{\partial t} \tag{71}
\end{equation*}
$$

has basis functions

$$
\Psi=\left\{\begin{array}{c}
\sin k x \tag{72}\\
\cos k x
\end{array}\right\} e^{-i E t / h}
$$

4. Wave equation in circular coordinates:

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} z}{\partial t^{2}} \tag{73}
\end{equation*}
$$

has basis functions:

$$
z=\left\{\begin{array}{l}
J_{n}(K r) \tag{74}\\
N_{n}(K r)
\end{array}\right\}\left\{\begin{array}{l}
\sin n \theta \\
\cos n \theta
\end{array}\right\}\left\{\begin{array}{l}
\sin K v t \\
\cos K v t
\end{array}\right\}
$$

5. Laplace equation in spherical coordinates

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}=0 \tag{75}
\end{equation*}
$$

has basis functions (where l is a non-negative integer, with $-l \leq m \leq+l$)

$$
u=\left\{\begin{array}{c}
r^{l} \tag{76}\\
r^{-l-1}
\end{array}\right\} P_{l}^{m}(\cos \theta)\left\{\begin{array}{c}
\sin m \phi \\
\cos m \phi
\end{array}\right\}
$$

Chapter 14 of Boas (Functions of a Complex Variable)

1. Basics of complex-valued functions of complex variable

$$
\begin{gather*}
f(z)=f(x+i y)=u(x, y)+i v(x, y) \tag{77}\\
f^{\prime}(z)=\frac{d f}{d z}=\Delta z \rightarrow 0 \frac{\Delta f}{\Delta z} \tag{78}
\end{gather*}
$$

2. If $f(z)$ is analytic in a region (i.e., has a unique derivative at every point), then

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \tag{79}\\
\frac{\partial v}{\partial x} & =-\frac{\partial u}{\partial y} \tag{80}
\end{align*}
$$

(Cauchy-Reimman conditions) and it's converse: if $u(x, y)$ and $v(x, y)$ satisfy these conditions, then $f(z)=u+i v$ is analytic.
3. If $f(z)$ is analytic in a region R, then it has derivatives of all orders at points inside R and thus it can be expanded in a Taylor series about any point z_{0} in R. This power series converges inside circle C about z_{0} that extends to the nearest singularity point (i.e., C just touches the boundary of R).
4. If $f(z)=u+i v$ is analytic in a region, then u and v satisfy (two-dimensional) Laplace's equation in the region. And, conversely, any function u (or v) satisfying Laplace's equation is the real (or imaginary) part of an analytic function $f(z)$.
5. Cauchy's theorem: if $f(z)$ is analytic inside and on a closed curve C, then

$$
\begin{equation*}
\int f(z) d z=0, \text { around } C \tag{81}
\end{equation*}
$$

6. Cauchy's integral formula: if $f(z)$ is analytic inside and on a closed curve C, then

$$
\begin{equation*}
f(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{z-a} d z, \text { around } C \tag{82}
\end{equation*}
$$

where $z=a$ is a point $i n s i d e ~ C$.
7. Laurent series: Let C_{1} and C_{2} be two circles with center at z_{0}. If $f(z)$ is an anlaytic function in the region R between $C_{1,2}$, then it can be expanded in a convergent series in R

$$
\begin{equation*}
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots \tag{83}
\end{equation*}
$$

associated with which are the following definitions:
(i) If all the b 's are zero, then $f(z)$ is analytic at $z=z_{0}$ (regular point);
(ii) If $b_{n} \neq 0$, but all the subsequent b 's are zero, then $f(z)$ is said to have a pole of order n a $z=z_{0}$. If $n=1$ here, then $f(z)$ has a simple pole at $z=z_{0}$;
(iii) If there are infinite number of b 's which are different than zero, then $f(z)$ has an essential singularity at $z=z_{0}$;
(iv) The coefficient b_{1} of $1 /\left(z-z_{0}\right)$ is called the residue of $f(z)$ at $z=z_{0}$.
8. Residue theorem:

$$
\begin{equation*}
\int f(z) d z(\text { around } C)=2 \pi i \text {. (sum of residues of } f(z) \text { inside } C \text {) } \tag{84}
\end{equation*}
$$

where we go counter-clockwise around C.
9. Methods of finding residues of $f(z)$:
(A) coefficient b_{1} in Laurent series about $z=z_{0}$;
(B) Simple pole:

$$
\begin{equation*}
R\left(z_{0}\right)=z \lim _{\rightarrow 0}\left(z-z_{0}\right) f(z) \tag{85}
\end{equation*}
$$

and if $f(z)=g(z) / h(z)$, then

$$
R\left(z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)} \text { if }\left\{\begin{array}{c}
\text { if } g\left(z_{0}\right)=\text { finite const. } \tag{86}\\
h\left(z_{0}\right)=0, h^{\prime}\left(z_{0}\right) \neq 0
\end{array}\right.
$$

(C) Multiple poles: multiply $f(z)$ by $\left(z-z_{0}\right)^{m}$, where m is an integer $\geq n$ (order of pole), differentiate the result $(m-1)$ times, divide by $(m-1)$!, and evaluate the resulting expression at $z=z_{0}$.
10. Definite integrals using residue theorem:
(i) Change of variables;
(ii) If $P(x)$ and $Q(x)$ are polynomials with degree of $Q \geq$ degree of $P+2$ and if Q has no real zeroes, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)}=2 \pi i .\left(\text { sum of residues of } \frac{P(z)}{Q(z)} \text { in upper half-plane }\right) \tag{87}
\end{equation*}
$$

(iii) If $P(x)$ and $Q(x)$ are polynomials with degree of $Q \geq$ degree of $P+1$ and if Q has no real zeroes, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{i m x}=2 \pi i .\left(\text { sum of residues of } \frac{P(z)}{Q(z)} e^{i m z} \text { in upper half-plane }\right) \tag{88}
\end{equation*}
$$

where $m>0$.
(iv) Poles on boundary:

$$
\begin{align*}
\int f(z) d z(\text { around } C)= & 2 \pi i \text {. (sum of residues at simple poles inside } C+ \\
& \frac{1}{2} \text { sum of residues of poles on the boundary) } \tag{89}
\end{align*}
$$

(v) Branch cuts: for integrals involvong fractional powers (or logarithm) of x (and thus z), we have to choose contour such that we stay on one branch of the fractional power (say, angle of z between 0 and 2π) so that the function is single-valued.
(vi) Argument principle:

$$
\begin{equation*}
N-P=\frac{1}{2 \pi i} \int \frac{f^{\prime}(z)}{f(z)} d z(\text { around } C)=\frac{1}{2 \pi} \Theta_{C} \tag{90}
\end{equation*}
$$

where N and P are the number of zeroes and poles, respectively, of $f(z)$ inside C and Θ_{C} is the change in angle of $f(z)$ around C.
11. Nature of $f(Z)$ at $Z=\infty$: it is a pole of order 2 if $f(1 / z)$ is the same at $z=0$ etc.
12. Residue at infinity:

$$
\begin{equation*}
\text { (residue of } f(Z) \text { at } Z=\infty)=-\left(\text { residue of } \frac{1}{z^{2}} f\left(\frac{1}{z}\right) \text { at } z=0\right) \tag{91}
\end{equation*}
$$

