PHYS 373 (Fall 2015): Mathematical Methods for Physics II
 Final exam: Monday, December 14, $8.00 \mathrm{am} .-10.00 \mathrm{am}$.

Read the instructions below and do not flip to next page till you are told to do so.

Name:
Student ID:
Useful formulae:

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{\cos (\pi p) J_{p}(x)-J_{-n}(x)}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \quad f(x)=\sum_{l=0}^{\infty} c_{l} P_{l}(x) \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \\
& f(x)=\sum_{-\infty}^{\infty} c_{n} e^{i n \pi x / l} \\
& N_{p}(x)=\frac{\cos (\pi p) J_{p}(x)-J_{-p}(x)}{\sin \pi p} \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x \quad P_{1}(x)=x \\
& \int_{0}^{1} x J_{p}(\alpha x) J_{p}(\beta x)=0(\alpha \neq \beta) \\
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \quad P_{0}(x)=1 \\
& f(z)=f(x+i y)=u(x, y)+i v(x, y) \\
& J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x) \\
& J_{0}(0)=1 \\
& \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x) \\
& N_{n}(0)=\infty \\
& J_{n \neq 0}(0)=0 \\
& \frac{\partial^{2}}{\partial x^{2}} T(x, y)+\frac{\partial^{2}}{\partial y^{2}} T(x, y)=0 \\
& T=\left\{\begin{array}{c}
e^{k x} \\
e^{-k x}
\end{array}\right\}\left\{\begin{array}{c}
\sin k y \\
\cos k y
\end{array}\right\} \\
& \text { or }\left\{\begin{array}{c}
\sin k x \\
\cos k x
\end{array}\right\}\left\{\begin{array}{c}
e^{k y} \\
e^{-k y}
\end{array}\right\} \\
& R\left(z_{0}\right)=z \rightarrow z_{0}\left(z-z_{0}\right) f(z) \\
& \int f(z) d z(\text { around } C)= \\
& -(\text { residue of } f(Z) \text { at } Z=\infty)= \\
& \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{i m x} d x(m>0)= \\
& J_{p}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+1+p)} \\
& a x^{2}+b x+c=0 \rightarrow \\
& g(\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \alpha x} d x \\
& J_{n}(\infty)=0 \\
& 2 \pi i \text {.sum of residues of } f(z) \quad \text { inside } C \\
& \text { (residue of } \frac{1}{z^{2}} f\left(\frac{1}{z}\right) \text { at } z=0 \text {) } \\
& 2 \pi i \text {.sum of residues of } \frac{P}{Q} e^{i m z} \text { in upper half-plane } \\
& P_{l}(x)=\frac{1}{2 l!\frac{d^{l}}{d x^{l}}}\left(x^{2}-1\right)^{l} \quad \int f(z) d z=0 \text {, around } C \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad R\left(z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}, \text { if } f=\frac{g}{h}
\end{aligned}
$$

It is necessary to show the details of the derivation and not just the final answer for all problems.
This is a closed book exam: crib sheets are not allowed.
In case they are needed, more blank paper and stapes are provided.
Please write clearly and if you use the backside of a page (or continue working on a problem on a later one), then please indicate so.

Check that there are total of 6 (printed) pages (containing 6 problems).
Note that some problems have multiple parts; so, please read the statement of each problem carefully.
Remember the honor pledge that you signed at the start of the semester.

