Solution to problems $4 \& 5$
Exam II

4 a. The Energy E is given by

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}} \quad n=1,2, \ldots
$$

Here, $L=0.5 \mathrm{~nm}=0.5 \times 10^{-9}$ meters

$$
\begin{aligned}
& m=9.11 \times 10^{-31} \mathrm{~kg} \\
& h=6.63 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

Plugging values

$$
E_{n}=n^{2} \times 2.4 \times 10^{-19} \mathrm{~J}
$$

The first two levels are for $n=1$ and $n=2$

$$
\begin{aligned}
& E_{n=1}=2.4 \times 10^{-19} \mathrm{~J} \\
& E_{n=2}=9.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

b. The energy lost must be the difference between $E_{n=2}$ and $E_{n=1}$

$$
\Rightarrow \quad \Delta E=E_{2}-E_{1}=7.2 \times 10^{-19} \mathrm{~J}
$$

C. The energy lost, calculated in b, must now be the energy of the election (assuming no every is lost)

$$
\Rightarrow \quad E_{\text {photon }}=\Delta E=7.2 \times 10^{-19} \mathrm{~J}
$$

We now recall that $E_{\text {photon }}=\frac{h c}{\lambda}$

$$
\begin{aligned}
\Rightarrow \quad \frac{h c}{\lambda} & =7.2 \times 10^{-19} \\
\Rightarrow \lambda & =\frac{h \cdot c}{7.2 \times 10^{-19}}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{7.2 \times 10^{-19}} \\
& =2.76 \times 10^{-7} \mathrm{~m} \\
& =276 \times 10^{-9} \mathrm{~m}=276 \mathrm{~nm}
\end{aligned}
$$

5. The width is given by

$$
W=\frac{2 \lambda L}{a}
$$

here $a=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} ; L=2 \mathrm{~m}$
To calculate λ, we use the de-Broglie relation

$$
\begin{aligned}
\lambda & =\frac{h}{p}=\frac{h}{m v} \\
\Rightarrow w & =\frac{2 \times \frac{h}{m v} \times L}{a}=\frac{2 h L}{m v a} \\
& =\frac{2 \times 6.6 \times 10^{-34} \times z}{9.1 \times 10^{-31} \times 4 \times 10^{6} \times 10^{-6}} \\
& =0.73 \times 10^{-3} \mathrm{~m} \\
& =0.73 \mathrm{~mm}
\end{aligned}
$$

