NAME / Section \#:	Exam II Problem \#3 Phys270

3. [30 pts] Light of wavelength λ impinges upon two parallel slits whose width is ' a ' and separation is ' d '. The diffraction pattern is projected onto a screen a distance ' L ' away. Assume that the slit separation $d>a$, the distance to the screen is much larger than the slit spacing $L \gg d$, ' a ' is small enough to observe diffraction effects, and the entire apparatus is in air.
a) [8 pts] List all the ways one can cause the diffraction pattern maxima on the screen to move closer together. Make sure to explain your reasoning.

b) [7 pts] What would happen to the diffraction pattern if the entire apparatus were to be submerged in an oil of index n? Explain your reasoning.
 indue). However, freq is uneffectid in un e prom n native Where fore wave hight dereasen by un same factor. As move closer on scrum.

NAME / Section \#:
Exam II (continued) Phys270

Problem \#3 Continued ----
c) [15 pts] The aparatus is in air. Consider the middle of the central maximum on the screen (where the path length is the same for light emanating from both slits) and call it point P . A small glass plate of index ng is then inserted directly behind one of the slits. Assume the thickness of the glass is very small compared to L (that is, assume that the rays of interest enter and leave the glass plate at approximately normal incidence). For what thickness of the glass plate does a minimum in the diffraction pattern ocurr at the central point P on the screen?

The extra phase difference that the glam slab introduce in else upper ray is $\left(n_{g}-1\right) \cdot t \cdot \frac{2 \pi}{x_{0 i n}}$ [page 690]. To have a minimum at $u_{n=1}$ centre $u_{\bar{m}}$ one needs to have $(n g-1) \cdot \frac{2 \pi t}{\lambda \text { air }}=(2 m+1) \pi$, where $m=0,1$. [condition of dusbuiclive interference of wo rays]. Hence

$$
z=\frac{(m+1 / 2) \lambda_{\text {air }}}{\left(n_{g}-1\right)} \quad m=0,1, \ldots
$$

