Lecture 9

• Power and Intensity

• Doppler effect for

(i) mechanical waves e.g. sound

(ii) EM waves

Power and Intensity

- Power is rate of transfer of energy by wave
- Brightness/loudness depends also on area receiving power:

intensity, $I = \frac{P}{a} =$ power-to-area ratio (SI units: W/m^2)

• Uniform spherical wave

 $I = \frac{P_{source}}{4\pi r^2}$ (from energy conservation: total energy crossing wavefront is same) $\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$

 $I \propto A^2$ (energy of oscillations $E = \frac{1}{2}kA^2$)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

distance r_2

is spread uniformly over a

spherical surface of area $4\pi r^2$.

Doppler effect

- relative motion between observer and wave source modifies frequency e.g. pitch of ambulance siren drops as it goes past
- moving source: Pablo detects (λ_-, f_-) , Nancy detects (λ_+, f_+) vs. (λ_0, f_0) if source at rest

Doppler effect:<u>derivation</u>

 motion of wave crest (once leaves source) governed by medium (not affected by source moving) → wave crests bunched up in front/ stretched out behind: λ₊ < λ₀ < λ₋ + speed v ⇒ f₊ > f₀ > f₋

Doppler effect for moving source

$$f_{+} = \frac{f_{0}}{1 - v_{s}/v}$$
 (Doppler effect for an approaching source)
 $f_{-} = \frac{f_{0}}{1 + v_{s}/v}$ (Doppler effect for a receding source)

Doppler effect: moving observer

 <u>not</u> same as source moving: motion relative to medium (not just source vs. observer) matters...

> $f_{+} = (1 + v_0/v)f_0$ (observer approaching a source) $f_{-} = (1 - v_0/v)f_0$ (observer receding from a source)

Doppler effect for <u>EM</u> waves

no medium: use Einstein's theory of relativity

$$\begin{split} \lambda_{red} &= \sqrt{\frac{1+v_s/c}{1-v_s/c}} \\ \text{(receding source: longer wavelength, red shift)} \\ \lambda_{blue} &= \sqrt{\frac{1-v_s/c}{1+v_s/c}} \\ \text{(approaching source: shorter wavelength, blue shift)} \\ \text{where } v_s \text{ is the speed of the source } relative \text{ to the observer} \end{split}$$