A fish swimming in a horizontal plane has velocity  $\mathbf{v}_i = (4.00\hat{\mathbf{i}} + 1.00\hat{\mathbf{j}}) \text{m} / \text{s}$  at a point in the ocean where the position relative to a certain rock is  $\mathbf{r}_i = (10.0\hat{\mathbf{i}} - 4.00\hat{\mathbf{j}}) \text{m}$ . After the fish swims with constant acceleration for 20.0 s, its velocity is  $\mathbf{v} = (20.0\hat{\mathbf{i}} - 5.00\hat{\mathbf{j}}) \text{m} / \text{s}$ . (a) What are the components of the acceleration? (b) What is the direction of the acceleration with respect to unit vector  $\hat{\mathbf{i}}$ ? (c) If the fish maintains constant acceleration, where is it at t = 25.0 s, and in what direction is it moving?

a) 
$$\vec{a} = \frac{\vec{V_4} - \vec{V_1}}{t}$$

$$= (20\hat{i} + 5\hat{j}) m_5 - (4\hat{i} + 4\hat{j}) m_5$$

$$= (16\hat{i} + 6\hat{j}) m_5 = \frac{16\hat{i}}{20} m_5^2 - \frac{6}{20} \hat{j} m_5^2$$

$$\vec{a} = a_1 \hat{i} + a_1 \hat{j} \rightarrow a_1 = 0.8 \, \text{m/s}^2$$

$$\vec{a}_3 = -0.3 \, \text{m/s}^2$$

b) 
$$\theta = \tan^{3}\left(\frac{-0.3}{0.8}\right) = -20.56^{\circ}$$
 Relative to the x-axis (339° From The x-axis)

c)  $\int_{1}^{2} = \int_{1}^{2} + \sqrt{v_{1}^{2}} + \frac{1}{2}a_{1}^{2}t^{2}$ 

$$= 10.m + 4m/s(25sec)^{2} + \frac{1}{2}(0.8m/s^{2})(25sec)^{2}$$

$$= 360m^{2}$$

$$\int_{1}^{2} = -4m^{2}j + 4m/s(25)^{2}j + \frac{1}{2}(-0.3m/s^{2})(25sec)^{2}$$

$$= -72.75m^{2}j$$

$$\sqrt{\sqrt{2}} = \sqrt{\sqrt{2}}i + a_{1}^{2}i +$$

$$\vec{V}_{t} = \vec{V}_{t} \hat{j} + \vec{\alpha}_{i} \hat{j} t = 1 \text{ m/s} \hat{j} + (-.3 \text{ m/s})(255e) = -6.5 \text{ m/s} \hat{j}$$

$$\Theta = \tan^{-1} \left( \frac{-6.5}{24} \right) = -15.15^{\circ}$$