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. Rigid Body

) = A rigid object is one that is non-deformable

= The relative locations of all particles making up the
object remain constant

= All real objects are deformable to some extent

= The rigid object model is very useful in many
situations where the deformation is negligible
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| Rotation of a Disk /g;

; ; ; O Reference
= Axis of rotation is through line

the center of the disk, O

s Every particle on the disk undergoes /e same
circular motion about the origin

= Polar coordinates are convenient to use to
represent the position of P
= Pis located at (r, )

= With ¢ measured in radian, the arc length and rare
related by s= 6 r
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Angular Speed and Acceleration

£
= An

b
ngular speed: v
. 9 91- Ag _ lim AQ d@ ®,
W = = W= no = ~oo
t,—t, At At dt A
®, 1,
= Angular acceleration: 0,
L a)f — a)l- Aa) lim Aa) da) o
o= = &= Ao = 0
(-t A At dt

= Angular speed is positive (negative) for counter-
clockwise ( clockwise) rotation
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Rotational Kinematics

-

Kinematic Equations for Rotational and Linear

Motion Under Constant Acceleration

Rotational Motion
About Fixed Axis Linear Motion
Wf= w; + ot vp = v; + al
6f= 95"‘ (ﬂjt‘l‘%&'f? x =xi+vit+éat2
(Uf2 = (U?:Q -+ 20!(9f‘_ 93) ’Uf2 — Uz'g e 265(.%']— xi)
| 1
sz 93+§(w£+ (r)j)t Xf': xi+§(vi+ U}()f
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. Linear and Angular Quantities

=3 Y
= The linear velocity is always
tangentto the circular path 1

« Called the tangential velocity P

ds  df <o

Vv rao

— = =
dt di b

m The tangential acceleration is
the derivative of the tangential velocity

av dw
a=—=r——-=ra
dt dt
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| Center of Mass

) = There is a special point in a system or object,
called the center of mass (CM), that moves as
if all of its mass (M = £m) is concentrated at
that point

= The system will move as if an external force were

applied to a single particle of mass M located at
the CM

= A general motion of an extended object can
be represented as the sum of a linear motion
of Mat CM plus a rotation about the CM
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| Center of Mass, cont
) = The coordinates of the CM are

Zmixj 2m£yl. Zml.zi
Xoy = "M Yem = "M Zom = "M
= CM can be located by its position vector, rqy
Zmiri
D = IM

where r;is the position of the /th particle:
r = xﬁ =f y_j + ij(
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. Example 1: CM of Two Masses

-1

Two masses, m, = 1.0 kg and m,
= 2.0 kg are located on the x-axis
at x; = 1.0 mand x, = 4.0 m,
respectively.

Find the CM of the system.
- mx,+m,x,

r. = l
cm
il+ i2

_ (L0kg)(1.O0m)+(2.0kg)(4.0kg) -

:).1

<«—XCM
my mo

1.0 kg + 2.0 kg
=3.0mi
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CM
) .'XIQ ‘I

= The CMis on the x
axis
= The CM is closer to

the particle with the
larger mass

—> xl |4—
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. CM of Extended Object

e —3
= An extended object can be

considered a distribution of
small mass elements, Am

= The coordinates of the CM are /

1 1 1
X,y :ijdm, Y s =H'fydm, Z o =szdm
. 1
= Vector position of the CM: 1, = er dm

= The CM of any symmetrical object lies on an axis of
symmetry and on any plane of symmetry
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| Notes on Various Densities

) = /o/ume mass density, mass per unit volume:
o=m/lV, dn=pdV
» Surface mass density, mass per unit area of a
sheet of uniform thickness ¢:
oc=m[A= pt dm = cdA
= [/ne mass density, mass per unit length of a

rod of uniform cross-sectional area A:
A=m[L=pA, dm = Adx
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| Example 2: CM of a Rod

=3
Find the center of mass of a ) o
rod of mass Mand length L. /m‘ &
Let A be the linear density. & L / >
Then, | » .
dm = Adx 04 »{
X <
M = [dm =L ix
The location of the CM i1son the x -axis:
Yem = Zew =0,
Xey = 1 [ xdm = 1 [ Axdx = AL« The rod is symmetric
M M 2M with respect to x = £/2

=L/2
9-Apr-28 Paik D. 12



Motion of a System of Particles

‘
= The velocity of the CM of the system of particles is
dr 1
V., =— = m\V.
Modt M Z o

= The momentum can be expressed as Mv_, => mV. =p,,

= The acceleration of the CM can be found as

dv 1
aCM — CM — Hzmlal

dt
= The acceleration can be related to a force
Ma. = ZF;
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. Rotational Energy

3
= The object’s rotational

Kinetic energy is the sum
of kinetic energies of each

Each particle in the object

Vi

" . has kinetic energy as the
Of the part|C|eS' object rotates.
1 1 1 1
K ==mv:i+=my, +=—mr’o’ +=mr,o" +-
w2 2 2 2

1 2) 2 1 2
= — mr° o =—Iw
Z(Z ” 2

= The quantity > m.r’is called the moment of inertia
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| Moment of Inertia

T
= Moment of inertia is defined as 1 =) m.r’

= Dimensions of 7 are ML? and its SI units are kg-m?

= For an extended object, we replace m; with small
mass element A/m;and take the limit A/m; —0:

= lim ZrzAml. = [ r*dm

Am; —0

= Expressing the mass element as dm = pdV
[= j prdV
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. Example 3: 7of a Rod

-3

Uniform rigid rod = The shaded area has a mass
about its center dm= 1 dx= (ML) dx

;I | = Then the moment of inertia

i IS

I - I = Irzdm = ILIZ % M dx

| —~>| - ~-L/2 L

= |

[ =— MI*
“ %I 12

I
I
|
I
I
I
< L 2
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| Example 3, cont

-
Uniform rigid rod = The shaded area has a mass
about its end dm= 1 dx= (ML) dx
= Then the moment of inertia
IS
?.rnalllfc‘cii;)f’ iizi}{;}/i&)\'!zn position x L L L3
| N I=[ridm=|x"Adx=1—
omt\\¢ |:] ‘ 0 0 3
{ —>|>|<—dx 1
0 L [ = gMLZ
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‘
Slab about its center
or edge

= The derivation of /for
the rod did not involve
the width or thickness

= Therefore, the same I
holds for a rod or slab

Example 4: 7of a Slab

of the same length and

Mass

9-Apr-28

Thin rod, u
about center v
7L
e
Thin rod, ﬂ
about end / 3
Plane or slab,
about center b
[ /t _—
/ a
Plane or slab,
about edge b
e ,
[
Paik
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Example 4, cont

‘
Slab about its = The mass element is
center dm = odxdy = %dxdy
ab
!{rlnluglﬂn||rhlu' E:-*|l£L! | -r11€3 TTTC)TT1EEFTt ()flir]EEthii i55

lewm = f%-lfiny b b=

i

2

[=[rldm r’=x"+y

+al?2 +b/2

[= j dx jdya(x2+y2)

—al?2 -bl2

1
=—M(a’+b°
> ( )
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. Example 5: [ of a Hoop

=3
Uniform thin hoop = Since this is a thin hoop,
about symmetry axis all mass elements are to

y a good approximation the
same distance from the

dm center
= Then the moment of

Inertia is
R
I = Irzdm :szdm
I = MR*

()
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. Example 6: [ of a Cylinder

b
Uniform solid cylinder = The moment of inertia is

about symmetry axis

]:jrzdm dm = pdV = p-27rLdr
0

R R 4
[ = jrszﬂrLdr = 27[ij rodr = 27szRT
0 0

_i 2 2:£ 2
= 2(p7zR L)R MR

Paik p. 21



Example 6, cont
Cylindrical objects

Hoop or thin 3 Hollow cvlinder
c}'!inﬂri{:ulisheﬂ :l P lM{H 2, B2 :
"’EH — JH.FE ks 2 ; . A Eﬁ

< S

Salid cyvlinder
or disk

feng = %MH“
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. Example 7: Iof a Sphere

sohd sphere | Thin spherical
[ P

i) oA :-il'll!'"
|rg 4, f MR-

Spherical objects

Iey = = MR

: 3
,.ﬁ;f
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| Parallel-Axis Theorem

-

= In the previous examples, the axis of rotation
coincided with the axis of symmetry of the object

s For an arbitrary axis, the parallel-axis theorem
often simplifies calculations '

= The theorem states
I= I+ Md?

where dis the distance from
the CM axis to the rotation axis

9-Apr-28

Paik

Rotation

axis

Axis

| ___—through
CM
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| Parallel-Axis Theorem, cont

‘ = The moment of inertia of
the rod about its center is

I, =—MIL v

o
12
« Dis1/2 L ,/

=1, +MD’ e

2
Pe— e id| 2] =pdr?
12 2) 3
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Vector Products of Vectors

Right-hand rule

-

= The vector product of je=ax®
vectors A and B, A X B,
IS defined as a vector
with the magnitude of

|A X B| = ABsind

Y-C=B X A

and the direction given by the right-hand rule
= fAisparalleltoB,then AXxB=0 = AXxA=0
= If A is perpendicular to B, then |A x B| = AB

= The vector product is also called the cross product

9-Apr-28 Paik p. 26



. Properties of Vector Products

-3
= The vector product is not commutative:

BXA=-AXDB

= The vector product obeys the distributive law:
AXxX(B+C)=AxB+AxC

= The derivative of the cross product is

d dA dB
—(AxB):—xB+A><—
dt dt dt
= It is important to preserve the multiplicative order of A
and B

9-Apr-28 Paik p. 27



- Using Components

-

= The cross product can be expressed as

i ] Ok
: A, A,
AxB=|d4, A, A=
’ B, B.
B, B, B,

Fal

| —

AX AZ
Bx BZ

= Expanding the determinants gives
AxB=(AB, - A4B,)i-(AB,-AB,)j+(AB,- AB,)k

Fal

J+

= The cross products of the unit vectors:
?xi:jx}:ﬁxﬁzO,

o

?xj:k,jxﬁ:i ﬁxi:j

9-Apr-28 Paik
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~—4F
|
I
| Torque r I /!
—— P — o
= Atorqueis definedas o Yy 7 47 Fcosg
SN ,/  Line of
T=rXF d > Q/ o
« 7= rFsing = Fd S

= The direction of 7 is given by the right hand rule

= d= rsingis the moment arm (or lever arm), the
perpendicular distance from the axis of rotation to a line
drawn along the direction of the force

= A torque is the tendency of a force to rotate an
object about some axis
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| Net Torque

‘ = Force F; will tend to cause a
counterclockwise rotation
about O

= Positive torque

= Force F, will tend to cause a
clockwise rotation about O

= Negative torque

» Xr=n+0=F04 - /4
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| Torque vs Force

=
= Forces can cause a change in /inear motion

= Described by Newton’s 2nd Law

= Forces can also cause a change in rotational/ motion

= The effectiveness of this change depends on the force
and the moment arm, thus on the forgue

= The SI units of torque are N-m

= Although torque is a force multiplied by a distance, it is
very different from work and energy

= The units for torque are reported in N'-m and not changed
to Joules
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| Torque & Angular Acceleration

-3
= [he tangential force provides a
tangential acceleration:

Fr= ma,= mra

= The torque produced by F,
about the center is
r=F.r=(mra)r=(mr?)a

= Since mr? is the moment of inertia of the particle,
7= la
= This is analogous to F= ma.
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Torque & Angular Acc, Extended

=3 \ |
= From Newton’s 2nd Law, | "

dF, = (dm)a, N\
= The torgue associated with the
force is '
dr=rdf,=ardm= ar?2dmn °
= The net torque is given by
Y= a_[rzdm =l
= This is the same relationship that applied to a particle

= The result also applies when the forces have radial

components
9-Apr-28 Paik p. 33




| Static Equilibrium

‘ = The condition for a rigid
body to be in static
equilibriumis TF, = 0, R
SF,=0and Zr=0 J

Lifting muscle
(biceps)

= YOUu can choose any pivot 1.0 om :
point since the net torque TP
about any point should be Ksiow
2610 o e Z3sem
L Foaven = 450N
q Find
NN L Pl
A |
]:‘:_]h““,{ d, . ........ ..ﬂ‘ !E:h. .
e
9-Apr-28 Paik
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. Example 8: Ladder
- —
A 3.0-m-long ladder leans against AN A
a frictionless wall at angle 6. The | ofmas
coefficient of static friction with the 3
ground g is 0.20.

What is the minimum angle 4., for  * -

which the ladder does not slip? Weight acts at #———"* Static friction

the center of mass. prevents slipping.

Choose the bottom corner of the ladder as the pivot.
ZFx:nz_fs :nz—ysnlzo, ZFy =n, — Mg =0

2.7 =%(L cos )Mg —(Lsin O)n, =0

L=30m

e The = O about
this point.

Mg = Mg — l = 1 :25 — Qmin :tan_125:68o
2n2 le’lsMg le’ls 0'40

9-Apr-28 Paik p. 35
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. Hinged Rod

- —
Why does the ball not move
with the end of the rod?

For the rod,
I=1/3)mL, = -mg (L/2) cosd
= la
—mg (L/2) cos@= 1/3 mla
a=—(3/2)(g/L) cosé
a,= La = —(3/2)g coséd
a,= a,cosf = —(3/2)g cos?*6

For the cup to fall faster than the ball,
la,l 2 g
= co0s?6=>2/3 6 < 35.3°

9-Apr-28 Paik




Example 9: Wheel

-

A block of mass m is suspended from a
cable which is wrapped around a
frictionless wheel of mass Mand radius R.

What is the acceleration of the block?

= The wheel is rotating and so we apply
217=1a
= The tension supplies the tangential force

= Friction between the wheel and string
causes the wheel to rotate

= The mass is moving in a straight line,
so apply Newton’s 2nd Law
XF,=ma,=-mg+T
9-Apr-28 Paik
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. Example 9, cont

L -—
Wheel: X 7= Ia

+7Rsin90° = Ja/R
7= 1alR, = (1/2)MR
Mass: 7 - mg=-ma

Solve for a:
a=-Tlm+g=-Ila/mR +g
a= g/(1 + I/ mR?)

a<gforM>0
T=mg/(1 + mRe[]) = mg/(1 + 2m/M)
As M— 0, T— 0, i.e. mis in free fall v

9-Apr-28 Paik D. 38



. Example 10: Pulleys and Masses

N
Two masses, m, and m,, Ts

are connected to each X /@
other through two identical T, Ty +
massive pulleys, as shown |
in the figure. al lm

Find the acceleration of the o i
masses.

+ =

= Both masses move in linear directions, so apply Newton’s
2nd Law

= Both pulleys rotate, so apply the torque equation
= Combine the results
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Example 10, cont

Newton’s 2nd Law for the masses . T TT
I—-mg=-ma I3-nmg=ma 1 ’

= L= Ty = (m—-m)g-(m+m)a el &
The torque equation for the pulleys s l'
mog
(71— )R=Ia, (T, - T;)R= Ia

= 7, - T3 =2Ia=21a/R
Combine these results to obtain

L (m—m)g
m,+m,+2(I/R’)

9-Apr-28 Paik p. 40



| Work in Rotational Motion

I
= Work done by F on the object as
it rotates through an infinitesimal

distance ds = rdo is ;

dW = F-ds = (Fsing) rdo
= dW= rdb

= The radial component of F does —
no work because it is perpendicular
to the displacement

9-Apr-28 Paik p. 41



| Power in Rotational Motion

) = The rate at which work is being done in a
time interval dt is

dw  do
Power=—=71—=10
dt dt
= This is analogous to P= F-vin a linear

system

9-Apr-28 Paik p. 42



Work-Kinetic Energy Theorem

L e—

= The net work done by external forces in rotating a
rigid object about a fixed axis equals the change in
the object’s rotational kinetic energy:

SW=[w6=|ladl= jl—a)d %la};—%lwf

= In general, net work done by external forces on an
object is the change in its fota/kinetic energy, the
sum of translational and rotational kinetic energies:

1 1 1 1
ZW = AKW = (EWZV; —I—Ela);j—(amvf —I—EIQ)fj

9-Apr-28 Paik p. 43



. Energy Conservation

‘ n If no frictionis involved, total mechanical
energy is conserved

K+ Ur= K+ U,

= Kincludes both rotational and translational kinetic
energies, if appropriate
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. Example 11: Rotating Rod

T

What is the rod’s angular o E;= U= MglL/2

. . A
speed when it reaches its
lowest position? 1o
Two methods:
1) SW= K~ K; —— e

Mgll2 = (1/2)Iwf, I= (1/3)ML?
— C()f= (3g/L)1/2
Ey= Ky = 510?

2) Since there is no friction
mentioned, assume that energy is conserved.

(1/2)Iw? + 0 =0+ Mgl/2 = w;= (3g/L)1?
9-Apr-28 Paik D. 45



. Example 12: Atwood Machine

N
Two masses, /m, and m,, connected by a

string around a pulley, are released from rest.
Find the linear and the angular velocities as a
function of A.
Assume energy is conserved:

AE=AK+AU=0

K=0, K=Y2(m + m)v?+ V2 lw?

AU= U;— U =—mgh+ mgh
= Vo (my + m)V? + Va Iw? + (m,— m)gh =0 f My ——5—
h
Substituting @ =v/R, ‘ ;s
v !
= 2(m2 _ml)gh ~ 2(m2 _ml)gh ¢ |
m,+m, +([/R*) m, +m, + M L
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. Example 13: Downhill Race

R _ Radius R —___
A sphere, a cylinder, and a
circular hoop, all of mass M and

Cylinder

radius R, are placed at height A
on a slope of angle 6.

Which one will win the race to
the bottom of the hill?

For work done by gravitational force: W, = mgh
W= K— K= (V2lw+ Vamv?) — (Valw? + Vamv?)
If no slipping occurs, @ = v/R. Also, w,=0.
W= "2 (I/]R>+m)v¢, vi= QW,/(I]R>* +m)'/> = 2gh/(I] mR*>+1)Y/>
The smaller 7, the bigger v;.
I/ mR? values: Particle: 0, Sphere: 2/5, Cylinder: 2, Hoop: 1
9-Apr-28 Paik p. 47
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| Summary of Useful Equations

L

Rotational Motion About a Fixed Axis Linear Motion

Angular speed w = d6/di Linear speed v = dx/dt

Angular acceleration a = dw/di Linear acceleration a = dv/dlt

Net torque 27 = Ja Net force 2F = ma

It W= w; T If ur= v; + at

a = constant Hj: 0; + w;t + %mﬂﬂ a = constant Xp= X Tyl + —(u”

of = o + 2a(6;— 6)) vf = v + 2&(1} — %)

7 %

Work W= j T db Work W= j Fy dx
: X

Rotational kinetic energy Kp = éfmg Kinetic energy K = %mv{z

Power P = 1w Power P = Fu

Angular momentum L = lw Linear momentum p = mv

Net torque 27 = dL/dl Net force ZF = dp/dl

9-Apr-28 Paik p. 48



. Rolling Cylindrical Object

o

= The red curve shows the path moved by a point
on the rim of the object

= This path is called a cycloid

= The green line shows the path of the CM of the
object

9-Apr-28 Paik p. 49



. Rolling Object, No Slipping

-

= The velocity of the CM is >
ds ,de
V —R—=Rw / \
M dt / :

= The acceleration of the
CM is A
av,,, do .

a... = =R—=R«
oM dr dt <—U

= Rolling motion can be modeled as a combination of
pure transiationa/ motion & pure rotational motion

9-Apr-28 Paik p. 50



Rolling Motion

Relationship between rotation and translation

<l ’ﬁ\ffcm /' ~ > U=Ugy t RO =2ucy

CM o1 o0\

/ N /
\\.—4'{}(-:[\1 \QP%U
I.)
(a) Pure translation (b) Pure rotation (¢) Combination of translation and rotation
. - P’
_— = v y
= At any instant, the point on Y

the rim located at point Pis
at rest relative to the surface
since no slipping occurs

9-Apr-28 Paik p. 51




. Kinetic Energy of a Rolling Object

=

= The total kinetic energy of a rolling object is the
sum of the translational energy of its CM and the
rotational energy about its CM

1 1 1 !
K= 1,0+ MV, :—ICM(VCMj M2,

2 R 2
:£]\4V2 ([CM +1j

2 M\ MR?

= Accelerated rolling motion is possible only if rolling
friction is present

= The friction produces the torque required for rotation
9-Apr-28 Paik p. 52



—

Example 14: Ball in a Sphere

A uniform solid sphere of radius :

r is placed on the inside surface || A
of a hemispherical bowl with -\/,‘/9\1 &
much larger radius R. The T

sphere is released from rest at i
an angle @ to the vertical and |
rolls without slipping.

Determine the speed of the
sphere when it reaches the
bottom of the bowil.

Mechanical energy is
conserved

I=(2/5)mr? for a solid
sphere

9-Apr-28 Paik p. 53



| Example 14, cont

I
Energy is conserved: /m-r)cose

Ur+ K= U+ K

U= mg[R-(R-r) cosd]

U= mgr

K= 0 "~

K.= Vomv? + Valw? = Vomv? (1 + I/ mr?)
= omv? (1 + 2/5) = (7/10)mv?

Substituting U’s and K’s into energy conservation,
mg[R — (R -r) cosd] — mgr = (7/10)mv?2

= v = [(10/7)g(R —r)(1 — cosH)]}/?

9-Apr-28 Paik p. 54
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. Example 15: Falling Disk
=
A string is wound around a uniform disk
of radius R and mass M. The disk is
released from rest with the string vertical
and its top end tied to a fixed bar.

Show that (a) the tension in the string is
one-third the weight of the disk, (b) the
magnitude of the acceleration of the CM

is 2g/3, and (c) the speed of the CM is S

(4gh/3)1/2 after the disk has descended
through distance A. (d) Verify your
answer to (c) using the energy approach.

9-Apr-28 Paik
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. Example 15, cont T _

- If]
@ > F =T-Mg=-Ma = T=M(g—a) |
ZT=—TR:—[05:—£MR{£) I \
2" R Mo RN
Ve MY

Solving these equations for 7', T = Ty

o 2 (Mg) 2
b p— p— —_ —
0y a=7%7 M(3j3g

(c) v;=vl.2+2a(xf—xl.)=0+2(%gj(h—0) = vfzwfggh

(d) Energyconservation: U +K,  +K,  ,=U, +K,  +K

i tra,i rot,i

2
0+1Mv;+1(1MR2j Y| - Mgh+040 = v, = |2 gh
27202 R 3

9-Apr-28 Paik p. 56




. Angular Momentum

=3
m The /nstantaneous angular i
momentum L of a particle relative
to the origin Ois defined as the
cross product of the particle’s
iInstantaneous position vector r 0

and its instantaneous linear /r n_p
momentum p: \ﬁ

L=rXxp

= The SI units of angular momentum are (kg-m?)/s
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| Angular Momentum, cont

=

= Both the magnitude and direction of L depend on
the choice of origin
= The magnitude of L is mvrsing

= The direction of L is perpendicular to the plane formed
by rand p d

= Example: Uniform circular motion
= L is pointed out of the diagram .
« [ = mvrsin 90° = mwr | |

= L is constant and is along an axis \ |
through the center of its path /

9-Apr-28 Paik ~ p.s58



. Torque and Angular Momentum

) = Consider a particle of mass m located at the
vector position r and moving with linear
momentum p

erF:Zz‘:rx%

. ar dr
Adding the term — x Note — =V
. ar v dt

d
Zz—: (rxp) ' ﬂ><p:V><mV=O

dt dt

9-Apr-28 Paik p. 59



. Torque & Ang Momentum, cont

) = The torque is related to the angular
momentum similar to the way force is related
to linear momentum:

dL
T=—o
2 dt
= This is another rotational analog of Newton'’s

2nd Law

= X1 and L must be measured about the same origin

= This is valid for any origin fixed in an inertial
frame, i.e. not accelerating
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L of a System of Particles

= Differentiating L., with respect to time,

stot . sz' o
i _Z di =L

i

= Any torques associated with the internal forces

acting in a system of particles are zero:
dL

- tot
Z Text d f

= The resultant torque acting on a system about an
axis through the CM equals dL,./at of the system
regardless of the motion of the CM
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L of a Rotating Rigid Object

b 2

= Each particle of the object
rotates in the xy plane about
the zaxis with an angular
speed of w

= The angular momentum of an

individual particle is:
| Lz| :| ri X (mzvz)| :mi’/;'za)

= L and o are directed along
the zaxis
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L of a Rotating Rigid Object, cont

= To find the angular momentum of the entire object,
add the angular momenta of the individual particles

L = ZL;- = Zmzrfa) =lw
= This gives the rotational form of Newton’s 2nd Law

RN L
dt dt

» If @ symmetrical object rotates about a symmetry
axis, the vector form holds with 7 as a scalar:

L=/w
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. Conservation of Ang Momentum

) = The total angular momentum of a system is
constant in both magnitude and direction if
the net external torgue acting on the system
IS zero

= 21, = 0 means the system is isolated

= If the mass of an isolated system undergoes
redistribution, the moment of inertia changes

= The conservation of angular momentum requires
a compensating change in the angular velocity

o J}G)/' —_ .[fa)f
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. The Merry-Go-Round

-

m L = + /

system platform person

= As the person moves
toward the center of the
rotating platform, the
angular speed will increase
= To keep L constant

= As the figure skater retracts
her stretched arms while
spinning, her angular speed
Increases |
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. Intrinsic Angular Momentum

) = Angular momentum has been used in the

development of modern theories of atomic,
molecular and nuclear physics

= The angular momentum has been found to
be an /ntrinsic property of these objects

= Angular momenta are multiples of a

fundamental unit of angular momentum
h _34 kg'm2
h=—=1054x10
27 S

= /1is called the Planck constant
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. Example 16: Woman on Turntable

T o

A 60.0-kg woman stands at the rim of a horizontal turntable
having a moment of inertia of 500 kg-m? and a radius of
2.00 m. The turntable is /nitially at rest and is free to rotate
about a frictionless, vertical axle through its center. The
woman then starts walking around the rim clockwise (as
viewed from above the system) at a constant speed of 1.50
m/s relative to the Earth.

(a) In what direction and with what angular speed does the
turntable rotate? (b) How much work does the woman do to
set herself and the turntable into motion?
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| Example 16, cont
=
Initially the turntable is not moving so its angular momentum
is zero. Since there is no external torque on the table, the
angular momentum stays zero when the woman walks. Since
she walks cw, o, < 0.

(a) Lwoman +Lturntable — O’ ]wa)w +Ita)t — O’ [ta)t — _mwrz(_z)
r
o0 =+ m,rv _ 60.0kg(2.00 m)(12.50 m/s) _ 0.360 rad/s cow
I 500 kg m

(b)WzAKsz—Ozém : +£1a)2

woman = woman 2 table

W = %(60.0 kg)(1.50 m/s)’ +%(500 kg m*)(0.360 rad/s)* =99.9J
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. Example 17: Bullet and Block

-
A wooden block of mass M
resting on a frictionless
horizontal surface is attached
to a rigid rod of length ¢ and

of negligible mass. The rod
is pivoted at the other end.
A bullet of mass m traveling

parallel to the horizontal surface and normal to the rod with
speed v hits the block and becomes embedded in it.

(a) What is the angular momentum of the bullet-block system?

(b) What fraction of the original kinetic energy is lost in the
collision?
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| Example 17, cont

- —

Consider the block and bullet as a system. Initially the angular
momentum is all in the bullet. Since there are no external
torques on the system, the angular momentum is constant.

(@) Since ).z, =0, L, =L. L =mvl, L, =(m+M)v {=mvl.

(b) K. :%mvz, K, =%(M+m)vf,

v, = ) Klemv2 7
m+ M 2 M +m

AK| K, -K, 1 2( " j( 1 zjl Iy
= =—mv°|1- —my =
K K 2 M +m

1
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Example 18: Space Statlon

o m—

A space station is constructed in the
shape of a hollow ring of mass 5.00 x
10% kg. (Other parts make a negligible
contribution to the total moment of
inertia.) The crew walk on the inner
surface of the outer cylindrical wall of
the ring, with a radius of 100 m. At
rest when constructed, the ring is set
rotating about its axis so that people
inside experience an effective free-fall acceleration equal to g. The
rotation is achieved by firing two small rockets attached tangentially
to opposite points on the outside of the ring.

(@) What angular momentum does the space station acquire?

(b) How long must the rockets fire if each exerts a thrust of 125 N?
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Example 18, cont

o 2 2
() Require g =—=w’r. w= \/g = \/ 9'fgom/ > —0.313rad/s
r r m

[ = Mr? =5.00x10" kg (100 m)* =5.00x10° kg m*
L =Iw=(5x10° kg m?)0.313rad/s)=1.57 x10° kg m’/s
(b) 7=2rF =2(100m)125N)=2.50x10° N m
_dL _L,-L
dt At
1.57x10° kg m*/s—0 kg m?/s
} 2.50x10° Nm

The total torque on the ring, multiplied by the time interval found in part
(b), is equal to the change in angular momentum, found in part (a). This
equality represents the angular impulse-angular momentum theorem.
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T ~=2.50x10° Nm

At =6280s




