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Rigid Body
A rigid object is one that is non-deformable

The relative locations of all particles making up the 
object remain constant
All real objects are deformable to some extent 

The rigid object model is very useful in many 
situations where the deformation is negligible
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Rotation of a Disk
Axis of rotation is through
the center of the disk, O

Every particle on the disk undergoes the same 
circular motion about the origin

Polar coordinates are convenient to use to 
represent the position of P

P is located at (r, θ)
With θ measured in radian, the arc length and r are 
related by s = θ r
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Angular Speed and Acceleration
Angular speed:

Angular acceleration:

Angular speed is positive (negative) for counter-
clockwise (clockwise) rotation
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Rotational Kinematics
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Linear and Angular Quantities
The linear velocity is always 
tangent to the circular path

Called the tangential velocity

The tangential acceleration is 
the derivative of the tangential velocity
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Center of Mass
There is a special point in a system or object, 
called the center of mass (CM), that moves as 
if all of its mass (M = Σmi) is concentrated at 
that point

The system will move as if an external force were 
applied to a single particle of mass M located at 
the CM

A general motion of an extended object can 
be represented as the sum of a linear motion 
of M at CM plus a rotation about the CM
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Center of Mass, cont
The coordinates of the CM are

CM can be located by its position vector, rCM

where ri is the position of the i th particle:
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Example 1: CM of Two Masses
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Two masses, m1 = 1.0 kg and m2
= 2.0 kg are located on the x-axis 
at x1 = 1.0 m and x2 = 4.0 m, 
respectively.  
Find the CM of the system.

The CM is on the x-
axis
The CM is closer to 
the particle with the 
larger mass
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CM of Extended Object
An extended object can be 
considered a distribution of 
small mass elements, Δm

The coordinates of the CM are

∫∫ ∫ ===  1  ,1  ,1 zdm
M

zydm
M

yxdm
M

x CMCMCM

Vector position of the CM:

The CM of any symmetrical object lies on an axis of 
symmetry and on any plane of symmetry
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Notes on Various Densities
Volume mass density, mass per unit volume: 

ρ = m /V,  dm=ρdV

Surface mass density, mass per unit area of a 
sheet of uniform thickness t : 

σ = m /A = ρt,  dm = σdA

Line mass density, mass per unit length of a 
rod of uniform cross-sectional area A: 

λ = m /L = ρΑ,  dm = λdx
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Example 2: CM of a Rod
Find the center of mass of a 
rod of mass M and length L.

The rod is symmetric 
with respect to x = L/2
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Motion of a System of Particles
The velocity of the CM of the system of particles is

The momentum can be expressed as

The acceleration of the CM can be found as

The acceleration can be related to a force
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Rotational Energy
The object’s rotational 
kinetic energy is the sum 
of kinetic energies of each 
of the particles:

The quantity           is called the moment of inertia∑
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Moment of Inertia
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Moment of inertia is defined as

Dimensions of I are ML2 and its SI units are kg.m2

For an extended object, we replace mi with small 
mass element Δmi and take the limit Δmi →0:

Expressing the mass element as

∫= dVrI 2ρ
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Example 3: I of a Rod 
Uniform rigid rod 
about its center

The shaded area has a mass    
dm = λ dx = (M/L) dx

Then the moment of inertia 
is
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Example 3, cont
Uniform rigid rod 
about its end

The shaded area has a mass 
dm = λ dx = (M/L) dx

Then the moment of inertia 
is
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Example 4: I of a Slab 
Slab about its center 
or edge

The derivation of I for 
the rod did not involve 
the width or thickness

Therefore, the same I
holds for a rod or slab
of the same length and 
mass
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Example 4, cont
Slab about its 
center
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The mass element is

The moment of inertia is
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Example 5: I of a Hoop
Uniform thin hoop 
about symmetry axis

Since this is a thin hoop, 
all mass elements are to 
a good approximation the 
same distance from the 
center

Then the moment of 
inertia is
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Example 6: I of a Cylinder
Uniform solid cylinder 
about symmetry axis

The moment of inertia is

( ) 222

4

0

3

0

2

0

2

2
1

2
1   

4
222

2     

MRRLR

RLdrrLrLdrrI

rLdrdVdmdmrI

RR

R

==

===

⋅===

∫∫

∫

ρπ

ρπρππρ

πρρ



9-Apr-28 Paik p. 22

Example 6, cont
Cylindrical objects
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Example 7: I of a Sphere
Spherical objects



9-Apr-28 Paik p. 24

Parallel-Axis Theorem
In the previous examples, the axis of rotation 
coincided with the axis of symmetry of the object

For an arbitrary axis, the parallel-axis theorem
often simplifies calculations

The theorem states 
I = ICM + Md 2

where d is the distance from 
the CM axis to the rotation axis



9-Apr-28 Paik p. 25

Parallel-Axis Theorem, cont
The moment of inertia of 
the rod about its center is 

D is 1/2 L
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Vector Products of Vectors
The vector product of 
vectors A and B, A x B, 
is defined as a vector 
with the magnitude of

|A x B| = AB sinθ
and the direction given by the right-hand rule 

If A is parallel to B, then A x B = 0  ⇒ A x A = 0
If A is perpendicular to B, then |A x B| = AB

The vector product is also called the cross product
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Properties of Vector Products
The vector product is not commutative:

B x A = − A x B

The vector product obeys the distributive law:
A x (B + C) = A x B + A x C

The derivative of the cross product is

It is important to preserve the multiplicative order of A
and B
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Using Components
The cross product can be expressed as

Expanding the determinants gives

The cross products of the unit vectors:
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Torque
A torque is defined as

τ = r x F
τ = r F sinφ = Fd

The direction of τ is given by the right hand rule
d = r sinφ is the moment arm (or lever arm), the 
perpendicular distance from the axis of rotation to a line 
drawn along the direction of the force

A torque is the tendency of a force to rotate an 
object about some axis
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Net Torque
Force F1 will tend to cause a 
counterclockwise rotation 
about O

Positive torque

Force F2 will tend to cause a 
clockwise rotation about O

Negative torque

Στ = τ1 + τ2 = F1d1 – F2d2
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Torque vs Force
Forces can cause a change in linear motion

Described by Newton’s 2nd Law

Forces can also cause a change in rotational motion
The effectiveness of this change depends on the force 
and the moment arm, thus on the torque

The SI units of torque are N.m
Although torque is a force multiplied by a distance, it is 
very different from work and energy
The units for torque are reported in N.m and not changed 
to Joules
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Torque & Angular Acceleration
The tangential force provides a 
tangential acceleration:

Ft = mat = mrα

The torque produced by Ft
about the center is

τ = Ft r = (mrα)r = (mr 2)α

Since mr 2 is the moment of inertia of the particle,
τ = Iα

This is analogous to F = ma.



9-Apr-28 Paik p. 33

Torque & Angular Acc, Extended
From Newton’s 2nd Law,

dFt = (dm)at

The torque associated with the 
force is

dτ = r dFt = atr dm = αr 2dm

αατ Idmr∫∑ == 2

The net torque is given by

This is the same relationship that applied to a particle
The result also applies when the forces have radial 
components
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Static Equilibrium
The condition for a rigid 
body to be in static 
equilibrium is ΣFx = 0, 
ΣFy = 0 and Στ = 0

You can choose any pivot 
point since the net torque 
about any point should be 
zero
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Example 8: Ladder
A 3.0-m-long ladder leans against 
a frictionless wall at angle θ.  The 
coefficient of static friction with the 
ground μs is 0.20.   
What is the minimum angle θmin for 
which the ladder does not slip?
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Hinged Rod
Why does the ball not move 
with the end of the rod?

For the rod,
 I = (1/3)mL2, τ = −mg (L/2) cosθ
 τ = Iα
 −mg (L/2) cosθ = 1/3 mL2α
 α = −(3/2)(g/L) cosθ
 at = Lα = −(3/2)g cosθ
 ay = at cosθ = −(3/2)g cos2θ

For the cup to fall faster than the ball,                
 ⏐ay⏐ ≥ g
 cos2θ ≥ 2/3    θ ≤ 35.3° x

y
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Example 9: Wheel
A block of mass m is suspended from a 
cable which is wrapped around a 
frictionless wheel of mass M and radius R. 
What is the acceleration of the block?

The wheel is rotating and so we apply 
Στ = Ια

The tension supplies the tangential force
Friction between the wheel and string 
causes the wheel to rotate

The mass is moving in a straight line, 
so apply Newton’s 2nd Law

ΣFy = may = −mg +T
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Example 9, cont
Wheel: Στ = Iα
 +TR sin90° = Ia/R
 T = Ia/R2, I = (1/2)MR2

 Mass: T − mg = −ma

Solve for a :
a = −T/m +g = −Ia/mR2 +g
a = g/(1 + I/mR2)
a < g for M > 0

T = mg/(1 + mR2/I) = mg/(1 + 2m/M) 
As M → 0, T → 0, i.e. m is in free fall
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Example 10: Pulleys and Masses
Two masses, m1 and m2, 
are connected to each 
other through two identical 
massive pulleys, as shown 
in the figure.
Find the acceleration of the 
masses.

a

Both masses move in linear directions, so apply Newton’s 
2nd Law
Both pulleys rotate, so apply the torque equation
Combine the results
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Example 10, cont
Newton’s 2nd Law for the masses

T1 − m1g = −m1a,  T3 − m2g = m2a  
⇒ T3 − T1 = (m1 − m2)g − (m1+m2)a

The torque equation for the pulleys

(T1 − T2)R = Iα,  (T2 − T3)R = Iα
⇒ T1 − T3 = 2Iα = 2Ia/R

Combine these results to obtain

a = (m1 −m2 )g
m1 +m2 + 2(I R2 )
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Work in Rotational Motion
Work done by F on the object as 
it rotates through an infinitesimal 
distance ds = rdθ is

dW = F.d s = (F sinφ) rdθ
⇒ dW = τdθ

The radial component of F does 
no work because it is perpendicular 
to the displacement
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Power in Rotational Motion
The rate at which work is being done in a 
time interval dt is

This is analogous to P = F⋅v in a linear 
system
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Work-Kinetic Energy Theorem
The net work done by external forces in rotating a 
rigid object about a fixed axis equals the change in 
the object’s rotational kinetic energy:

In general, net work done by external forces on an 
object is the change in its total kinetic energy, the 
sum of translational and rotational kinetic energies:
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Energy Conservation

If no friction is involved, total mechanical 
energy is conserved

Kf + Uf = Ki + Ui

K includes both rotational and translational kinetic 
energies, if appropriate
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Example 11: Rotating Rod

Two methods:
1) ∑W = Kf − Ki

MgL/2 = (1/2)Iωf
2, I = (1/3)ML2

⇒ ωf = (3g/L)1/2

2) Since there is no friction 
mentioned, assume that energy is conserved.

Kf + Uf = Ki + Ui

(1/2)Iωf
2  + 0 = 0 + MgL/2 ⇒ ωf = (3g/L)1/2

What is the rod’s angular 
speed when it reaches its 
lowest position?
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Example 12: Atwood Machine
Two masses, m1 and m2, connected by a 
string around a pulley, are released from rest. 
Find the linear and the angular velocities as a 
function of h. 
Assume energy is conserved: 

ΔE = ΔK + ΔU = 0
Ki = 0, Kf = ½ (m1 + m2)v 2 + ½ Iω2

ΔU = Uf − Ui = −m1gh + m2gh

⇒ ½ (m1 + m2)v 2 + ½ Iω2  + (m2 − m1)gh = 0
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Example 13: Downhill Race

For work done by gravitational force: Wg = mgh
W = Kf − Ki =  (½Iωf

2 + ½mvf
2) − (½Iωi

2 + ½mvi
2)

If no slipping occurs, ω = v/R.  Also, ωι = 0.
W = ½ (I/R2 +m)vf

2, vf = (2Wg/(I /R2 +m)1/2 = 2gh/(I /mR2+1)1/2

The smaller I, the bigger vf .
I /mR2 values: Particle: 0, Sphere: 2/5, Cylinder: ½, Hoop: 1

A sphere, a cylinder, and a 
circular hoop, all of mass M and 
radius R, are placed at height h
on a slope of angle θ.  
Which one will win the race to 
the bottom of the hill?
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Summary of Useful Equations
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Rolling Cylindrical Object

The red curve shows the path moved by a point 
on the rim of the object

This path is called a cycloid

The green line shows the path of the CM of the 
object
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Rolling Object, No Slipping
The velocity of the CM is

The acceleration of the 
CM is

Rolling motion can be modeled as a combination of 
pure translational motion & pure rotational motion
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Rolling Motion 
Relationship between rotation and translation

At any instant, the point on 
the rim located at point P is 
at rest relative to the surface 
since no slipping occurs
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Kinetic Energy of a Rolling Object
The total kinetic energy of a rolling object is the 
sum of the translational energy of its CM and the 
rotational energy about its CM

Accelerated rolling motion is possible only if rolling 
friction is present 

The friction produces the torque required for rotation
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Example 14: Ball in a Sphere
A uniform solid sphere of radius 
r is placed on the inside surface 
of a hemispherical bowl with 
much larger radius R.  The 
sphere is released from rest at 
an angle θ to the vertical and 
rolls without slipping.
Determine the speed of the 
sphere when it reaches the 
bottom of the bowl. Mechanical energy is 

conserved 
I = (2/5)mr 2 for a solid 
sphere
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Energy is conserved: 
Uf + Kf = Ui + Ki

Ui = mg[R − (R −r) cosθ]
Uf = mgr
Ki = 0
Kf = ½mv2 + ½Iω2 = ½mv2 (1 + I/mr2) 

= ½mv2 (1 + 2/5) = (7/10)mv2

Substituting U ’s and K ’s into energy conservation,
mg[R − (R −r) cosθ] − mgr = (7/10)mv2

⇒ v = [(10/7)g(R −r)(1 − cosθ)]1/2

Example 14, cont
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Example 15: Falling Disk
A string is wound around a uniform disk 
of radius R and mass M.  The disk is 
released from rest with the string vertical 
and its top end tied to a fixed bar.  
Show that (a) the tension in the string is 
one-third the weight of the disk, (b) the 
magnitude of the acceleration of the CM 
is 2g/3, and (c) the speed of the CM is 
(4gh/3)1/2  after the disk has descended 
through distance h.  (d) Verify your 
answer to (c) using the energy approach.
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Example 15, cont
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Angular Momentum
The instantaneous angular 
momentum L of a particle relative 
to the origin O is defined as the 
cross product of the particle’s 
instantaneous position vector r
and its instantaneous linear 
momentum p:

L = r x p

The SI units of angular momentum are (kg.m2)/s



9-Apr-28 Paik p. 58

Angular Momentum, cont
Both the magnitude and direction of L depend on 
the choice of origin

The magnitude of L is mvr sinφ
The direction of L is perpendicular to the plane formed 
by r and p

Example: Uniform circular motion
L is pointed out of the diagram
L = mvr sin 90o = mvr
L is constant and is along an axis 
through the center of its path
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Torque and Angular Momentum
Consider a particle of mass m located at the 
vector position r and moving with linear 
momentum p
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Torque & Ang Momentum, cont

∑ =
dt
dLτ

The torque is related to the angular 
momentum similar to the way force is related 
to linear momentum:

This is another rotational analog of Newton’s 
2nd Law 

Στ and L must be measured about the same origin
This is valid for any origin fixed in an inertial 
frame, i.e. not accelerating
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L of a System of Particles
Differentiating Ltot with respect to time,

Any torques associated with the internal forces 
acting in a system of particles are zero:

The resultant torque acting on a system about an 
axis through the CM equals d Ltot/dt of the system 
regardless of the motion of the CM
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L of a Rotating Rigid Object

ωr|=mm|=|| iiiiii
2)( vrL ×

Each particle of the object 
rotates in the xy plane about 
the z axis with an angular 
speed of ω

The angular momentum of an 
individual particle is:

L and ω are directed along 
the z axis
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L of a Rotating Rigid Object, cont
To find the angular momentum of the entire object, 
add the angular momenta of the individual particles

This gives the rotational form of Newton’s 2nd Law

If a symmetrical object rotates about a symmetry 
axis, the vector form holds with I as a scalar: 

L = I ω
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Conservation of Ang Momentum
The total angular momentum of a system is 
constant in both magnitude and direction if 
the net external torque acting on the system 
is zero

Στext = 0 means the system is isolated

If the mass of an isolated system undergoes 
redistribution, the moment of inertia changes

The conservation of angular momentum requires 
a compensating change in the angular velocity
Ii ωi = If ωf
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The Merry-Go-Round
Isystem = Iplatform + Iperson

As the person moves 
toward the center of the 
rotating platform, the 
angular speed will increase 

To keep L constant

As the figure skater retracts 
her stretched arms while 
spinning, her angular speed 
increases
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Intrinsic Angular Momentum
Angular momentum has been used in the 
development of modern theories of atomic, 
molecular and nuclear physics

The angular momentum has been found to 
be an intrinsic property of these objects

Angular momenta are multiples of a 
fundamental unit of angular momentum

h is called the Planck constant
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Example 16: Woman on Turntable
A 60.0-kg woman stands at the rim of a horizontal turntable 
having a moment of inertia of 500 kg·m2 and a radius of 
2.00 m.  The turntable is initially at rest and is free to rotate 
about a frictionless, vertical axle through its center.  The 
woman then starts walking around the rim clockwise (as 
viewed from above the system) at a constant speed of 1.50 
m/s relative to the Earth. 
(a) In what direction and with what angular speed does the 
turntable rotate?  (b) How much work does the woman do to 
set herself and the turntable into motion?
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Example 16, cont
Initially the turntable is not moving so its angular momentum 
is zero.  Since there is no external torque on the table, the 
angular momentum stays zero when the woman walks.  Since 
she walks cw, ωw < 0.

J 9.99rad/s) 360.0)(m kg 500(
2
1m/s) kg)(1.50 .060(

2
1      

2
1

2
10  (b)

ccw  rad/s 360.0
m kg 500

)m/s 50.1)(m 00.2(kg 0.60      

)(   ,0   ,0  (a)

222

22

2

2

=+=

+=−=Δ=

==+=

−−==+=+

W

IvmKKW

I
rvm

r
vrmIIILL

tablewomanwomanf

i

w
t

wttttwwturntablewoman

ω

ω

ωωω



9-Apr-28 Paik p. 69

Example 17: Bullet and Block
A wooden block of mass M
resting on a frictionless 
horizontal surface is attached 
to a rigid rod of length l and 
of negligible mass.  The rod 
is pivoted at the other end.  
A bullet of mass m traveling
parallel to the horizontal surface and normal to the rod with 
speed v hits the block and becomes embedded in it. 
(a) What is the angular momentum of the bullet-block system? 
(b) What fraction of the original kinetic energy is lost in the 

collision?
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Example 17, cont
Consider the block and bullet as a system.  Initially the angular 
momentum is all in the bullet.  Since there are no external 
torques on the system, the angular momentum is constant.  
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Example 18: Space Station

inside experience an effective free-fall acceleration equal to g. The 
rotation is achieved by firing two small rockets attached tangentially 
to opposite points on the outside of the ring. 
(a) What angular momentum does the space station acquire? 
(b) How long must the rockets fire if each exerts a thrust of 125 N?

A space station is constructed in the 
shape of a hollow ring of mass 5.00 x 
104 kg. (Other parts make a negligible 
contribution to the total moment of 
inertia.) The crew walk on the inner 
surface of the outer cylindrical wall of 
the ring, with a radius of 100 m. At 
rest when constructed, the ring is set 
rotating about its axis so that people
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Example 18, cont
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The total torque on the ring, multiplied by the time interval found in part 
(b), is equal to the change in angular momentum, found in part (a).  This 
equality represents the angular impulse-angular momentum theorem.


