

The math of it

- To make our discussion of electric current quantitative, we have to
- define what we mean by current.
- describe the mechanism of the resistance (a viscous drag)
- describe the force pushing the charges through the drag (an electric field).

4/22/11
Physics 122 3

Quantifying current

■ Consider a wire containing movable current carriers (electrons).

- Define the electric current as rate at which charge moves past a surface.

$$
I=\frac{\Delta q}{\Delta t}
$$

- The unit of current is the Ampere $(=1 \mathrm{C} / \mathrm{s})$

4/22/11
Physics 122
4
\qquad

Pushing through the drag

- Consider an electron moving in a conductor with a uniform electric field
\qquad
- By Newton 2, a constant flow (= constant v) means the forces balance.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Building the current equation

- $I=$ (charge) (number per unit volume)
$($ Volume $) /($ time $)=q n(A \Delta x) /(\Delta t)=q n A v$
- Substituting into $v=(q / b) E$
- (basically says that if the field in the wire is more, then the charges move faster)

Rearrange

\square Express E in terms of ΔV (easier to measure)
■ Express v in terms of I (ditto). \qquad
$\Delta V=E L \quad \Rightarrow \quad E=\frac{\Delta V}{L}$
$I=q n A v \Rightarrow v=\frac{I}{q n A}$
So $\quad q E=b v \Rightarrow \frac{q \Delta V}{L}=\frac{b I}{q n A}$
$\Delta V=I\left(\frac{b L}{q^{2} n A}\right) \equiv I R$

What?! (Ohm's Law)

- Current proportional to velocity
- Due to resistance,

Electric force proportional to velocity.

- Force proportional to
"electric pressure drop"
$=$ "electric PE "
Like force down nail board proportional to mgn
Therefore, current proportional
to "electric PE"

$$
\Delta V=I R
$$

4/22/11
Physics 122
13

For biologists only

One way of reading Ohm's law is to say that the push divided by the resistance gives the current. ($\Delta V / R=I$)

- Instead of resistance, biologists often like to talk about how a material facilitates rather than resists current flow.
- They introduce the conductance $G=1 / R$. Then Ohm's law becomes $G \Delta V=I$.

4/22/11
Physics 122

Electric circuit elements

- Batteries -devices that maintain a constant electrical pressure difference across their terminals (like a water pump that raises water to a certain height).
Resistance - devices that have significant drag and oppose current. Pressure will drop across them.
- Wires - have very little resistance. We can ignore the drag in them (mostly as long as there are other resistances present).
\qquad

The current rule

- The most useful result that carries over from the water flow analogy to the flow of electric \qquad current is:
- Kirchoff's current rule:
- The total amount of current flowing into any point in a network equals the amount flowing out (there is no significant build-up of charge anywhere).
\qquad
\qquad
\qquad
\qquad
\qquad

The Potential Rule

- Both the water flow and nail board analogies use \qquad gravity instead of electric force. They have the following property:
- Gravity potential rule:
- Whenever you walk around a loop, however far you went up is equal to however far you went down. (You wind up at the same place.)
- Electric potential for electric forces is analogous \qquad to height (times g) for gravitational forces.
- Kirchoff's potential rule:
- Around any loop the sum of the potential drops = the
\qquad sum of the potential rises.

4/22/11
Physics 122

Foothold ideas (Kirchoff's Rules)

- Flow Rule
- The total amount of current flowing into any point in a network equals the amount flowing out (no significant build-up of charge anywhere).
- Potential Rule
- Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).
\qquad
\qquad
\qquad
\qquad
\qquad
■ Ohm's Rule
- When a current I passes through a resistance R, there is a \qquad voltage drop across the resistor of an amount $\Delta V=I R$ \qquad

Very useful heuristic

- The Constant Potential Trick (CPT)
- Along any part of a circuit with 0 resistance, \qquad then $\Delta V=0$, i.e., the voltage is constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Electric Power Dissipation

- We can figure out the energy needed to push the electrons through the material against the resistance using the W-E theorem. \qquad $P=$ rate of doing work (using energy) $=\frac{\Delta W}{\Delta t}$ \qquad
$=$ (number of charges moved) \times
(force) $\times($ distance moved in a time $\Delta t)$ \qquad
$P=\frac{(n A L)(q E)(v \Delta t)}{\Delta t}=(n A L) q v \frac{\Delta V}{L}=(n A q v) \Delta V=I \Delta V$ \qquad

4/22/11

$$
P=I \Delta V
$$

Units of power

Since the units of work (energy) is the Joule, the unit of power is the Joule/second.
\qquad

- 1 Watt = 1 Joule/second (definition)

■ Our analysis shows that current x voltage $=$ power.
■ 1 Watt $=1$ Ampere x 1 Volt

