

Outline

- Finish ILD 2
- A challenge to our foothold ideas about light
- Light as waves
- Huygens' Principle
- Interference
- Connecting to the ray model

3/11/11
Physics 122
2

What was going on in this experiment?

■ When in lab you put light through a thin
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Huh?

- Can we explain this result in the ray model?
- or do we need something different?
- The really strange part is that by opening \qquad another source, at some places we wind up getting less light! \qquad
- Remember our early definition of a "foothold idea". \qquad
\qquad

The Wave Model of Light: Pros

■ About the same time as Newton, \qquad a Dutch physicist, Christiaan Huygens proposed that light was a wave - a kind of \qquad oscillation in "the ether that fills empty space." (Whatever that means.) \qquad

- An oscillation can help us explain the "cancellation" that happens when we open \qquad another source.
- Two out of phase oscillations satisfying a "superposition principle" can cancel at some places.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Wave Model of Light: Cons

\qquad
\qquad

- Sources in a wave model produce ripples that move outward in circles.
- But what we've seen is that "light \qquad moves in straight lines."
- Can we reconcile these ideas?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Waves to Rays

- We can isolate a small piece of a wave by passing it through a hole in a screen and treat it like a ray.
- We can consider the rays as going perpendicular to the wave surfaces of constant height.
- If the wiggles in the waves are small and fast enough, we can ignore the oscillations.

3/11/11
Physics 122
11

Huygens' Principle

- Christian Huygens (a Dutch contemporary of Newton) proposed a way of thinking about how waves propagate.
- The critical structure for waves are the surfaces of equal amplitude: wavefronts.
- Huygens suggested:

Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets). The sum of the wavelets produces a new wavefront.

3/11/11
Physics 122
12

Propagation of Waves

The wavelet model implies that a plane wave will travel in a straight line.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The wavelet model implies that a plane wave will reflect off a mirror according to the rule: angle of incidence $=$ angle of reflection.

$$
\begin{aligned}
& \sin \theta_{i}=\frac{c \Delta t}{h} \\
& \sin \theta_{c}=\frac{v \Delta t}{h} \\
& \frac{1}{v} \sin \theta_{c}=\frac{1}{c} \sin \theta_{i}
\end{aligned}
$$

The wavelet model implies that a plane wave will refract into a medium according to the Snell's law and tells us that $n=c$ (speed of light in the medium).
hitp.//www.walier-fendt.derphilerinygenspr.htm
http://www.phy.ntnu.edu.tw/java/propagation/propagation.html

Foothold wave ideas:
 Huygens' Model

\square The critical structure for waves are the lines or surfaces of equal phase: wavefronts. \qquad
Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).
■ The sum of the wavelets produces a new wavefront.
■ The waves are slower in a denser medium.
3/11/11
Physics 122
19
\qquad

