■ Theme Music: Superchunk The Question is How Fast

■ Cartoon: Bill Amend

Foxtrot

Outline

- Go over Quiz #1
- Waves: Pulses on a spring
- Propagation of a pulse: What controls the speed of a pulse?
- Propagation of a pulse: What controls the width of a pulse in time?
- Superposition: How do waves combine?
- Waves: Foothold principles

Quiz 1

1.1	Υ	N		1.2	1.3	1.4
а	20%	80%	а	91%	76%	39%
b	28%	72%	b	6%	3%	8%
С	51%	49%	С	1%	20%	43%
d	86%	14%	d	3%	1%	10%
е	24%	76%				
f	18%	82%				

Waves

- Up to now, we have considered the motion of bits of matter. Now, we want to consider the motion of patterns of motion of bits of matter.
- The ideas we develop here will "cut loose" from the underlying matter and later develop an independent fundamental character of its own.

Demonstration: Waves on a long spring

■ Pulses

- Transverse
- Longitudinal

Displacements on an elastic string / spring

- Each bit of the string can move up or down (perpendicular to its length).
- To describe the motion of the string we need to describe the motion of each bit of the string at every instant of time.
- We therefore need to tell both which bit and when in order to specify a displacement.

$$y_i = f_i(t)$$
 $y = f(x,t)$

A Model

- The critical characteristics for what happens on the spring are:
 - The bits of the spring are elastic, so they pull displaced bits back towards equilibrium.
 - The bits of the spring have mass (implies intertia) so they overshoot.
- We will create a model that separates these characteristics so we can talk about them more easily:
 - massive beads
 - massless springs

How do the beads move?

Why do I draw beads on the x-graph but not on the t? Are the widths of the x- and t-graphs the same?

Describing the motion of the beads

Pulse moving to the right

What Controls the Speed of the Pulse?

■ Doing the wave

Does it matter how highyou stand up?

Does it matter howthe next persongets their infoon when you moved?

Speed of a wave on a string

- The masses (m) in a string of beads of length (L) are pulled by the tensions (T) of the springs.
- The speed of the pulse must depend on these and <u>only</u> these parameters.
- Can we create a velocity from these using dimensional analysis?

Dimensional analysis

- Square brackets are used to indicate a quantities dimensions
 - mass (\mathcal{M}) , length (\mathcal{L}) , or time (\mathcal{T})

$$-\lceil m \rceil = \mathcal{M}$$

$$-[L] = \mathcal{L}$$

$$-[t] = \mathcal{T}$$

$$-[F] = \mathcal{ML}/\mathcal{I}^2$$

$$-[v] = \mathcal{L}/\mathcal{T}$$

$$-[T] = \mathcal{ML}/T^2$$

$$-[T/m] = \mathcal{L}/T^2$$

$$- [TL/m] = L^2/T^2$$

$$v_0^2 = \frac{TL}{m}$$

or, using
$$\mu = m/L$$
 $v_0 = \sqrt{\frac{T}{\mu}}$

Motion of a wave pulse

■ Whatever shape we make, it moves down the spring without changing its shape with a speed

$$v_0 = \sqrt{T/\mu}$$

 v_0 = speed of pulse T = tension of spring

μ = mass density ofspring (mass/length)

What controls the widths of the pulses in time and space?

Propagating a pulse

- The amount of time the demonstrator's hand was displaced up and down determines the time width of the t-pulse, Δt .
- The speed of the signal propagation on the string controls the width of the x-pulse, ΔL .
 - The leading edge takes off with some speed, v_0 .
 - The pulse is over when the trailing edge is done.
 - The width is determined by "how far the leading edge got to" before the displacement was over.

$$\Delta L = v_0 \Delta t$$