October 13, 2010
Physics 121 Prof. E. F. Redish

■Theme Music: John Williams

Learn about the Force (from Star Wars)
■Cartoon: Bill Amend
FoxTrot

10/13/10

Finally, 9 found it on the Internet with Google.

Physics 121

Outline

■ Recap of Newtonian Foothold Principles

- Properties of Forces
- Gravity
- Friction
- Normal Force (ILD 3)

■ Review of basic elements of trig
■ Examples

Newton's Laws

- Newton 0:
- Objects only feel forces when something touches them. An object responds to the forces it feels when it feels them - plus the non-touching force of gravity (so far).
- Newton 1:
- An object that feels no unbalanced force keeps moving with the same velocity (which may $=0$).
- Newton 2:
- An object that is acted upon by other objects

$$
\vec{a}=\vec{F}^{n e t} / m
$$ changes its velocity so that the acceleration is proportional to the net force and inversely proportional to the object's mass.

- Newton 3:
- When two objects interact the forces they exert on each other are equal and opposite.

$$
\vec{F}_{A \rightarrow B}=-\vec{F}_{B \rightarrow A}
$$

Classification of Forces

- Physical forces are what two objects do to each other that tends to change each other's velocity.
- Touching forces
- perpendicular to the surface and pressing in (NORMAL $-N$)
- hooked to the surface and pulling out (TENSION - T)
- parallel to the touching surfaces and opposing the relative motion of the surfaces (FRICTION $-f$)
- Non-touching forces
- the earth pulling an object down (GRAVITY - W) $\vec{F}_{A \rightarrow B} \quad$ where F is either N, T, f, or W

Springs

■ What fraction of the total stretch does each spring stretch?

■ How do you know?

$$
T=k \Delta s
$$

The friction relation

■ When the surfaces are not sliding on each other (but something is trying to make them slide), the friction force may take any value up to a maximum.

$$
f_{A \rightarrow B} \leq f_{A \rightarrow B}^{\max }=\mu_{A B}^{\text {static }} N_{A \rightarrow B}
$$

■ When the surfaces are sliding on each other, the friction force is a constant value (usually a bit less than the maximum possible).

$$
f_{A \rightarrow B}=\mu_{A B}^{\text {kinetic }} N_{A \rightarrow B} \quad \mu_{A B}^{\text {kinetic }} \leq \mu_{A B}^{\text {static }}
$$

Review of Trig: 1

\square Trig is based on a small number of principles:

- The sum of the angles of a triangle is 180°.
- The Pythagorian theorem
- Every right triangle with the same angles is similar (has the same ratio of its sides).

Although opp, adj, and hyp all depend on the size of the triangle, the ratios opp/adj, opp/hyp, and adj/hyp only depend on itsshape (that it, on θ).

Review of Trig: 2

$$
\sin \theta=\frac{o p p}{h y p} \quad \cos \theta=\frac{a d j}{h y p} \quad \tan \theta=\frac{o p p}{a d j}
$$

Pythagorian theorem:

$$
\begin{aligned}
& (\text { adj })^{2}+(\text { opp })^{2}=(\text { hyp })^{2} \\
& \quad \text { or } \\
& \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

Physics geometry heuristic: If you are drawing a diagram that is controlled by a single angle θ, and the rest of the lines are constructed as perpendiculars to the original or later lines, then the only angles in the diagram are $\theta, 90-\theta$, and $90-$ and it's easy to tell which is which.

What is the acceleration of a block sliding down a ramp?

$$
\boldsymbol{W}_{\mathrm{E} \rightarrow \mathrm{~B}}
$$

Example

Start from rest

Increase force until box starts moving
Pull so it goes at a constant speed

Graph: position net force

velocity acceleration
applied force friction force

■ Rebecca has put her puppy, Molly, on a skateboard, and has attached a rope to the skateboard in order to give Molly a ride. At time $t=0$,
 Rebecca starts pulling on the rope. She is pulling upward at an angle of 37°. Once she is up to speed (at time t_{1}), she runs along at a constant rate until a time t_{2}. A little after that, her mother yells at her and she stops.

- (a) While Rebecca is pulling, draw free-body diagrams for Molly and the skateboard.
■ (b) Sketch appropriate graphs representing Molly's position, velocity, acceleration, and the friction force Molly is experiencing. 10/13/10

Physics 121
13

