Theme Music: Gravity *Jesse Cook*

Cartoon: Johnny Hart

Outline

- Quiz 3 on acceleration
- Recap of Newton's Laws
- Gravity

Footholds 2.0

Revised summary of Newton's Laws

■ Newton 0:

Objects only feel pForces when something touches them.
 An object responds to the pForces it feels when it feels them.

■ Newton 1:

An object that feels a <u>net pForce</u> of 0 keeps moving with the same velocity (which may = 0).

■ Newton 2:

 An object that is acted upon by other objects changes its velocity according to the rule

pForces acting on the object. $- \overrightarrow{F}^{net}$

vector sum of all the

■ Newton 3:

 When two objects interact the pForces they exert on each other are equal and opposite.

$$\vec{F}_{A\to B} = -\vec{F}_{B\to A}$$

Force-labeling convention

- According to our foothold idea, forces are what objects do to each other when they touch.
- If a force is a
 - normal force we label it as
 - tension force we label it as
 - friction force we label it as
- We put subscripts on each force telling who is acting on whom.

$$F_{\text{(object causing force)} \to \text{(object feeling force)}}$$

Vertical motions

- If we no longer restrict our considerations to horizontal motions, we know objects can change their velocities when nothing is touching them.
- We have to either choose to reject our insights and laws developed from horizontal experiments or see if we can adapt them.

Proposing Gravity

Suppose we try to include vertical motions in our system by hypothesizing:

- There is a non-touching force that acts on every object.
- Could some other object be causing it? What?
- What are its properties?
 - How does it depend on position? time?
 - How does it depend on the object?

The Properties of Gravity

- How can we tell how the force of gravity depends on an object?
- Do you think the force of gravity is the same or different for different objects?
- Experiment: See how it behaves when gravity is the <u>only</u> force acting on it. We expect it to speed up (accelerate). How does that acceleration depend on the object? \vec{W}

m

The Gravitational Field Strength

We find that, when we can ignore the effects of other objects (the air), that all objects accelerate the same in free fall (only W acting).

$$\vec{a} = \frac{\vec{W}}{m} = \vec{g}$$

- Experimentally, this is a constant independent of the object. Therefore: $\vec{W} = m\vec{g}$
- Define the constant g as the *gravitational field strength*. (Units of N/kg)

Making sense

- Consider two experiences to see if we can make sense of this.
 - A. If I hold the light object
 and the heavy objects in my hands,
 which one is pulled more by gravity?
 - B. If I kick a soccer ball and a cannon ball with the same kick, which one will speed away faster?

Foothold Ideas: Gravity

Every object (near the surface of the earth) feels a downward pull proportional to its mass: What object

$$\vec{W}_{E \to m} = m\vec{g}$$

causes W?

where \vec{g} is referred to as the gravitational field.

- This is a pForce even though nothing touching the object is responsible for it.
- The gravitational field has the same magnitude for all objects irrespective of their motion and at all points.
- The gravitational field always points down.
- It is measured to be $g \approx 9.8 \text{ N/kg}$

Why N/kg instead of m/s²?

9/27/10 Physics 121

Newton's Laws: 3.0

A pForce is what two objects do to each other when they touch that can change each others' velocities.

Measured by the stretch of a spring.

■ Newton 0:

 Objects only feel pForces when something touches them plus the effect of gravity (which does not require touching).
 An object responds to the forces it feels when it feels them.

■ Newton 1:

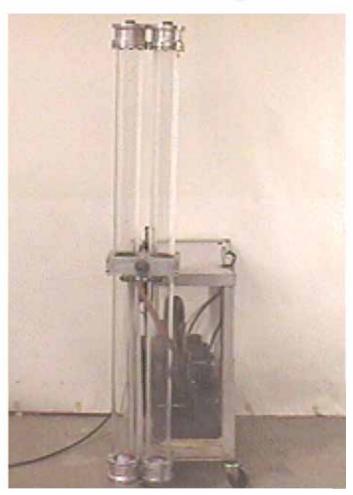
- An object that feels a net pForce of 0 keeps moving with the same velocity (which may = 0).

■ Newton 2:

- An object that is acted upon by other objects changes its velocity according to the rule $\vec{a} = \vec{F}^{net} / \vec{a}$

■ Newton 3:

 When two objects interact the pForces they exert on each other are equal and opposite.


$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

Response to Gravity: Free Fall

- After an object has been released,
 - if it is dense enough so the forces
 from the air can be ignored
 - if nothing else is touching it
 the only force acting on it is gravity.

$$\vec{a} = \vec{F}^{net} / m = \vec{W}_{E \to m} / m = \vec{mg} / m = \vec{g}$$

Is it really true that air is what makes a difference for light objects?

Calculating the motion of a body in free fall

- Free-fall doesn't just mean "falling". It means "there are no other pForces that have to be considered other than gravity."
- Consider up and down motion only.

$$a = \frac{F^{net}}{m} = \frac{W_{E \to m}}{m} = \frac{mg}{m} = g$$

$$\langle a \rangle = g = \frac{\Delta v}{\Delta t} \qquad \langle v \rangle = \frac{\Delta y}{\Delta t}$$

Y (

9/27/10 Physics 121

Example

Suppose I throw the ball upward and it leaves my hand with a velocity v₀.
How far up does it go and how long does it go upward?

$g = \frac{\Delta v}{\Delta t} \qquad \langle v \rangle = \frac{\Delta y}{\Delta t}$
$v_i = v_0 \qquad y_i = 0 \qquad t_i = 0$
$v_f = 0$ $y_f = h$ $t_f = T$
$g = \frac{v_f - v_i}{t_f - t_i} \qquad \langle v \rangle = \frac{y_f - y_i}{t_f - t_i}$
$g = \frac{v_0}{T} \qquad \langle v \rangle = \frac{h}{T}$
$\left\langle v\right\rangle = \frac{v_i + v_f}{2} = \frac{v_0}{2}$
$T = \frac{v_0}{g} \qquad \frac{v_0}{2} = \frac{h}{T}$
$h = \frac{1}{2}v_0T = \frac{v_0^2}{2g} = \frac{1}{2}gT^2$
10