🌠 Page 2 of 13: Exam I F07

MULTIPLE CHOICE: Choose the one most nearly correct and complete answer and insert its letter into your answer sheet. (Note that a table of ten matching questions comprises items #46 through #55 of this exam, and you may wish to sequence your work accordingly.)

- 1. Please enter the answer (A) or (B) into item 1 of your NCS sheet to answer question #1: At the top line of this page on the left side it says:
 - a) "This is Version A of the Exam"
 - b) "This is Version B of the Exam"
- 2. A cyclist covers 160 miles between 2 PM and 6 AM. What was his instantaneous speed at the halfway point?
 - a. 10 mph
 - b. 20 mph
 - c. 40 mph
 - d. 80 mph
- e. Not enough information is given to be able to say.
- 3. On a trip to Philadelphia, you start your parked car, drive to Baltimore, stop for a one hour coffee break and arrive and park in Philadelphia exactly two hours after leaving College Park. If it is 120 miles to Philadelphia, your average speed would be 60 mph. Which of the following statements about this trip is correct?
 - a. To average 60 mph the car, having started and ended at rest, must have exceeded 120 mph for some portion of the trip.
 - b. The instantaneous speed was certainly equal to 60 mph at some point during this trip. T
 - c. It is possible to average 60 mph even if the speed is zero for one half of the trip's duration. T
 - d. Since the car speeds up after each stop and slows down before each stop, it certain that T the car traveled faster than 120 mph at some point in the trip
 - All of the above statements are correct.
 - f. None of the above statements is correct.
- 4. What average speed, most nearly, is required to run a hundred yards in 10 seconds?

5. The acceleration of an object at a time, t, during a trip of duration, T, is defined to be:

- a. one half of the sum of the maximum and the minimum velocities divided by T. F b. the average velocity divided by T.
- c. the total trip distance divided by T², on dimensional grounds.
- d. the difference between the final velocity and the initial velocity divided by T.
- e. the value of the velocity at the midpoint of the time interval divided by T 🗜 f. None of the above.
- 6. Which of the following quantities could specify an acceleration vector
 - a. 5 m/s^2
 - (b) 5 m/s² downward
 - c. 5 ms North

e. 60.0m/s f. 100.0 m/s

- d. 5 des West
- e. 5-mas East
- f. None of the above could possibly specify a physical acceleration.

7. An object is accelerating	
a. only when its speed changes.	
b. only when its direction changes.	
c. when either its speed or direction changes. d. if its velocity is large.	
d. if its velocity is large.	
e. whenever no net force is acting upon it, by Newton	n's II Law.
f. In none of the above cases.	$(- (L_{-}41))$
	(Coursen tactors /
8. If a go-cart requires 30 seconds to accelerate from 0 to 9	10 km per hour, $ \frac{90-0}{30-0} = \frac{3k_1}{k_1-k_2} \times \frac{10^3 \text{m}}{k_1 + k_2} \times \frac{10^3 \text{m}}{3100 \text{ kg}} $
its average acceleration is, most nearly,	•
a. 80 m/ sec ²	90-0 3kg 10 m 1kg
b. 8.0 m/sec ²	3/10 LL
©. 8 m/sec ²	son beste wer arrest
d. 3 m/sec ² e. 30 m/sec ² = 0. 833	/_ A 8
e. 30 m/sec = 0. 833 7	Sec-
Q. In the stroke discourse below 4b a bell is seen in Co. 1.0	a ta west e
9. In the strobe diagram below the ball is moving from left statement best describes the motion? The ball is	to right. Which
\	(R)
a. not accelerating.	0
b speeding up.	
c. slowing down.	
d. moving with a constant speed.	
e. none of the above.	
10. A pitcher requires about 0.2 second to throw a baseball.	If the ball leaves his hand with a speed
of 40 m/s how large is its average acceleration during t	he throw?
a 20m/s	
b. 20 m/s^2 $\vec{a} = \frac{40}{30.2}$	264 m/g.
(c.) 200 m/s	
d. 200 m/s	
e. None of the above is both dimensionally correct an	d within 10%
of the true answer.	
11. When we said that light objects and heavy objects fall at	the same rate, what
assumption(s) were we making?	
a. They have the same shape.	
b. They have the same size.	
c. They have surfaces with similar air resistances	
d They are falling in a vacuum.	
e. They are made of the same material.	S. C. H I
f. All of the above assumptions are required to make a	inem Iall at the same rate.
g. None of the above assumptions (a through e) suffice	es to yield the same rates
12. The motion of a block sliding down a frictionless ramp	can be described as
motion with	
a.a constant acceleration less than 10 m/s ²	a = g Jin & < g = 10 7/22
b. a constant speed that depends on the slope of the ran	np.
c. an acceleration which increases as the block continu	es sliding.
d. a constant acceleration which is negative (i.e., slows	
to friction.	
e. a constant speed, independent of the slope of the ran	1p.
f. None of the above.	

1	13. If a ball is dropped:	from rest, it will fa	all 5 m during th	e first second	. How far			
	will it fall during t	ha aireth account m	and manular ?					
	a. 15 m	d = 9/2 t²	1//1-1/	1d= 10	(31-25)	= 55	Jul	
	b. 25 m	d = 7/2 [-	B(4) - 01	2				
	c. 45 m							
	355 m							
	e. 65 m							
	f. None of the abo	ve is correct with	in 10%.				**	
	5.4 A 511 1/1	61.61		* *.*	1 606	,		
1	14. A ball with a mass of			ard with a spe	ed of 35 m	/s.		
	What are its speed a	ind direction 5 sec	onds later?					
	a. 15 m/s upward	_	a . a +	= +35	- 10.5	·= -/	5 YAL	
	b. 5 m/s upward	で る	, 20 - AC			7		
	c. zero	_	vo-gt		/	redo	warmed)	
	d. 5 m/s downward	•			1.	,		
	e. 15 m/s downwar		8					
	T. None of the above	ve is within 10% o	of the correct ans	swer				
1:	5. If we use plus and m	inus sions to indi	eate the direction	e of velocity	and acceler	ration		
-	in one dimension, in							
	a. negative velocit			accs me obje	or spood up	·•		
	b. positive velocit							
	c. zero velocity ar	• •						
	d. zero velocity ar	-				100		
	© In all of the abo							
	f. In none of the c			hiert eneeds :	m			
	i. iii iioiio oi uio o	abob, a amough a c	ibove, does me c	oojeet speeds	up.			
1	16. The Center of Mass	Point of a solid b	ody					
		red point in a coor	•	xed to the bod	ly itself.			
	b. moves as thou					ocation.		
	c. moves as thou							
	d. may be located							
	e. All of the abov				f Mass Poi	nt.		
		ove answers is tru						
17	7. A car initially travel	ing north at 20 m/s	s has a constant	acceleration o	$f 0.5 \text{ m/s}^2$			
	Northward. How far	does the car trave	i in the first 10 s	, most nearly	?			
	a. 25 m	d(t) = 1 = 2		+2				
	b. 50 m	611 = 7	吃一 十宝 在	8				
	c. 125 m	2 2	a. 10 + 1	10.5 100	= 220	76		
	<u>d.</u> 150 m		2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	(e.) 225 m							
	f. 250 m							
	None of the abo	ve is within 10% o	of the correct ans	swer.				
10	A ainma alaum ulaus	4- l						
19.	. A circus clown plans							
	upward speed of 30 r	•	-					
	and catch the ball at						6	
	he catch the ball, mo	st nearly!	-	منص		24. 1	45 250	٠.
	a. l	vo - 9.t	"" =0 =>	time	Vo/9-	3/10	350	•
	b. 2	• •			•	•-	- - -	

f. None of the above is within 10% of the correct answer.

Page 5 of 13: Exam I F07 19. If an object moves in a straight line with a constant speed, we can conclude that a. the object is unaccelerated. T b. there is no net force acting on the object. c. if there is any non zero force acting on the object, there must be two or more forces acting on it. d. there is no unbalanced force acting on the object. e. All of the above conclusions (a through d) are valid. f. None of the above answers is correct. 20. A train is moving with constant velocity along a level section of track. The net force on the first car is _____ the net force on the last car. (a.) equal to (8 FNET = 0 smal 3 = conit = a=0). b. much greater than c. slightly greater than d. much less than e. slightly less than f. None of the above completions, a through e, yields a correct answer. 21. If there is a constant net force acting on an object, its motion will be one with acceleration. ORDINARILY "a constant not face" is taken to mean Zero D) a constant, non-zero "a constant non-zero net force". Still, take lebrolly c. an increasing a net face of zone is indeed a construct not force. Then (a) d. a decreasing It is not possible to say from the information given. because a possible afterned in to b) 22. What is the magnitude, most nearly, of the net force acting on an object which—
is subject to a 5 N force acting south and a 5 N force acting east?

Compared to a 5 N force acting south and a 5 N force acting east? a. 0 N FI = 5N FART = V25+25 = 5VZ = 7.07 N b. 1 N c. 3 N d. 5 N e.) 7 N F 9N g. None of the above is within 10% of the correct answer. in an attempt to move it across the basement. It will not budge. The weight of the freezer (including ice cream) is 1500 N. The coefficient of static friction, μ_{Static} is a. equal to 0.4, exactly. FIRMICE PLS |N| = HS - 1500 & b. greater than 0.4 but less than 0.6. c. less than 0.4.

23. You are applying a 600-newton force to a freezer full of chocolate chip ice cream 600 = | Frpp | = | Fstatfi | < Fshaff < Ms. 1500

s a true statement.

600 < Ms 1500

1 = 0.4 < Ms

1500 d. greater than or equal to 0.4 less than 0.4 but greater than 0.25 f. None of the above completions yields a true statement. 24. Which of the following is not a vector quantity? a. force

b. acceleration

c. weight

d. velocity

e_ Displacement

) speed 🗡

g. None of the above is a vector quantity

h. All of these (a through f) are vector quantities.

25.	a mass of 2 kg if its velocity is 20 m/s and the frictional force is 40 N?
1	a. 8 m/s^2 b. 10 m/s^2 c. 12 m/s^2 d. 14 m/s^2 (e.) 26 m/s^2
,	f. None of the above is correct within 10%.
26.	An astronaut on a strange planet has a mass of 80 kg and a weight of 160 N. What is the value of the acceleration due to gravity on this planet, most nearly?
	c. 6 m/s ²
	d. 8 m/s ² e. 10 m/s ²
27.	A ball with a weight of 35 N is thrown vertically upward. What is the force on the ball just as it reaches the top of its path, most nearly?
	a. zero
	b. 10 N upward c. 10 N downward
	d. 20 N downward
(e. 20 N upward None of the above is within 10% of the correct answer.
28.	A ball falling from a great height will reach terminal speed when its goes
	to zero. a. velocity **
	b. gravity force 🗶
	c. weight X d. speed X
	e. mass X f) acceleration \(\sigma =
(f) acceleration 721. Because at 1822 person 782 person 1825.
	g. None of the above insertions yields a true statement.
29.	You leap from a bridge with a bungee cord tied around your ankles. As you approach the
1	river below, the bungee cord begins to stretch and you begin to slow down. The force of the cord on your ankles slowing you down is
;	a. much less than
	b. slightly less than c. just equal to
	in just equal to preater than because the net force (Ferny-W) is appeared. There is not an order to be a series of the net force (Ferny-W) is appeared.
,	e. There is not enough information to say for sure.
30. [Ferry and Chris pull hand-over-hand on opposite ends of a rope while standing on a
8	frictionless frozen pond. Terry's mass is 75 kg and Chris's mass is 25 kg. If Chris's acceleration is 3 m/s², what is Terry's acceleration?
G	$\int_{-3}^{1} \frac{m/s^2}{m/s^2} = \int_{-\infty}^{\infty} \left \frac{1}{s} \right = \frac{mT}{4}$
Ċ	$\frac{1 \text{ m/s}^2}{5.3 \text{ m/s}^2} \text{meac} = F_{cT} = F_{T,c} = \text{m}T a_T$ $\frac{6 \text{ m/s}^2}{25.3} = \frac{75 \text{ a}T}{75 \text{ a}T} \Rightarrow a_T = \frac{1 \text{ m/sec}^2}{1 \text{ m/sec}^2} = 1 \text{ m$
C	1. 9 m/s ² 2. None of the above is within 10% of the correct answer.
•	Troube of any accord is written to 70 of the confect shiswet.

31. When a snowflake falls, it quickly reaches a constant terminal velocity. This happens because
a. the gravity force stops acting on the snowflake as it fallsb. there is no force acting on it.
c. the snowflake has no weight.
d the mass of the anaryticles in another than it and the
d. the mass of the snowflake is smaller than its weight.
(e.) None of the above explanations is sufficient and correct. If feel it hoppers because the long face quickly because agond to the beight 32. By what factor does the centrinetal acceleration change if a circumstance around
The second of th
a corner four times as fast?
a. 0.25 b. It stays the same. c. 2 d. 4 $u \rightarrow 4v \Rightarrow a \rightarrow (4v)^2 = 16 \sqrt[3]{R}$.
b. It stays the same.
c. 2 $a=v^2/k$ $v^2+v^2=k$
e. 16
f. None of the above is within 10% of the correct answer.
33. What net force acts on a 3 kg object moving in a circular path with a radius
of 20 m at a constant speed of 40 m/s?
a. 480 N
(b) 240 N F= m u 2/2 = 3 (40)/20 = 240 N
c. 120 N
d. 80 N
e 60 N
f. None of the above is within 10% of the correct answer.
34. A 20-kg child on a merry-go-round is traveling in a circle with a radius of 12 m
at a speed of 4 m/s. What is the acceleration experienced by this ability
at a speed of 4 m/s. What is the acceleration experienced by this child, most nearly?
b. 0.75 m/s ² a = 03/R = 16/12 = 1.33 m/set =
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1.53 \text{ m/s}^2}{\text{d.}}$
e. $4.75 \mathrm{m/s}^2$
f. 5 m/s^2
The state of the s
g. None of the above is within 10% of the correct answer.
35. A golf ball is hit with an initial vertical speed of 20 m/s and an initial horizontal
speed of 30 m/s. How long will the ball remain in the air? (Neglect air resistance
and assume the course is flat)
a. 1s b. 2s c. 3s d. 4s $T = 2 + 70 = 2 \cdot 20 = 4 \cdot 27 = 4 \cdot 27 = 4 \cdot 27 = 2 \cdot 20 = 4 \cdot 27 = 27 = 20 = 20 = 20 = 20 = 20 = 20 =$
b. 2s 20 70
c. 3s
(d.) 4s
7 6 s
None of the above is within 10% of the correct answer.
Scenario 36-37
A gun is held horizontally and fired. At the same time the bullet leaves the
gun's barrel an identical bullet is dropped from the same height. Neglect air resistance.
36. Refer to Scenario 36-37. Which bullet will hit the ground with the greatest speed? (a) The bullet that was fired.
b. The bullet that was dropped.
a) The bullet that was fired. b. The bullet that was dropped. c. It will be a tie. because its velocity has both verteel howards
d The mestion can't be answered with the lact
d. The question can't be answered with the information given.
नारण है

- 37. Refer to Scenario 36-37above. If the bullets were not identical, but rather the dropped bullet had twice the mass of the one fired, which bullet would hit the ground first?
 - a. The bullet that was fired.

b. The bullet that was dropped.

Rate of fell is independent of mark, markething air resistance. (c.) It will be a tie.

- d. The question can't be answered with the information given.
- 38. A 1 kg ball is thrown straight down from the edge of a tall cliff with a speed of 30 m/s. At the same time a 2 kg ball is thrown straight up with the same speed. If the 2 kg ball travels up, stops, and then drops to the bottom of the cliff, which ball (if either) will be traveling faster when it reaches the ground below?
 - a. The 1kg ball, because its mass is smaller and it moves faster
 - b. The 2kg ball, because its mass is larger and it accelerates at a greater rate.

The 1 kg ball, but not for the reason given in (a) above.

d. The two balls will be traveling at the same speed when they hit.

e. There is not enough information to say.

39. Which of the following statements about projectile motion is true (neglecting air resistance)?

The horizontal and vertical motions are independent.

b. The force on the projectile is constant throughout the flight.

c. The acceleration of the projectile is constant throughout the flight. T

d. The path depends upon the initial velocity, but not upon the mass of the projectile.

All of the above statements are true: T f. None of the above statements is correct X

40. In projectile motion the

a. acceleration is parallel (or antiparallel) to the velocity.

b. acceleration is perpendicular to the velocity.

c.) acceleration is vertical, while the velocity can be in any direction.

d. acceleration is vertical and the velocity is horizontal.

e. The acceleration reaches its minimal value of zero at the top of the trajectory.

f. None of the above.

- 41. A baseball player throws a ball from left field toward home plate. Assume that you can neglect the effects of air resistance. At the instant the ball approaches home plate, the ball's acceleration
 - a. reaches its maximal value
 - b. reaches its minimal value

retains its constant value, zero.

Has the same magnitude as it had at the highest point of the ball's trajectory.

e. There is not enough information to say.

- 42. If a small child stands on a spring scale at rest, it reads 100 N, which means his mass is 10 kg. If instead he stands on the scale while accelerating upward in an elevator at 4 m/s2, what force would the scale exert and register?
 - a. 104 N

b. 110 N

(C) 140 N d. 410 N

because scale must come Weight & supply 4011 on her for cause acceleration.

Page 9 of 13: Exam I F07

Figure 43-44

A 400 kg race car is moving counterclockwise on a circular path of radius 800 m as shown in the diagram below. Suppose that at this instant, the car is at point P and moving at a constant speed of 20 m/s in the upward direction on the page.

- 43. Refer to Figure 43-44. In what direction, precisely, does the net force point at the instant described?
 - a.
 - b.

towards conter

- None of the above.
- 44. Suppose that the race track of Fig 43-44 is covered with a film of oil which reduces the coefficients, (both static and kinetic) of friction on the tires to zero and that the car is kept in its circular paths by cables attached to a post at the center of the track. What, most nearly, is the tension in the cable attached to the car in Fig.38 at the instant described above?
 - a.) $2 \times 10^2 \text{ N}$
- T= Fc = M D3/R = (400)(20) = 200 N
- $6. 4 \times 10^2 \text{ N}$ c. $2 \times 10^3 \text{ N}$
- d. $4 \times 10^3 \,\mathrm{N}$
- e. $2 \times 10^4 \text{ N}$
- $4 \times 10^4 \text{ N}$
- g. None of the above is within 10% of the correct answer.
- 45. A mass, m = 0.900kg, hanging on a spring of spring constant, k= 10N/m, oscillates with a period, T= 1.88 s. If another oscillator has a mass four times as large and a spring constant one fourth as large, its period will be (most nearly)?
 - a. 0.12 s
 - b. 0.47 s
 - c. 0.94 s
 - d. 1.88 s
 - e. 3.76 s 7.52 s

- $T_0 = 2\pi \sqrt{\frac{M_0}{K_0}}$ $T_1 = 2\pi \sqrt{\frac{4M_0}{K_0/4}} = 2\pi \sqrt{\frac{16M_0}{K_0}} = 4T_0$
 - = 7.5286.

g. 30.08 s None of the above is within 10% of the correct answer.

Page 10 of 13: Exam I F07

Ten Matching Questions, #46 through #55 follow.
For each numbered item, fill in the circle on you NCIS answer sheet which corresponds to the letter of the item on the right which correctly matches it.

	Numbered Items	Lettered Matching Items
C	46. Projectile Motion	A. Focuses attention on acceleration rather than velocity
#	47.Speed with direction	B. Encompasses and Replaces Galileo's Principle of Inertia.
5	48.Acceleration	C. Simultaneous vertical motion with $a_y = -g$ and horizontal motion with $a_x = 0$.
G	49. Period of a Harmonic Oscillator	B. Pairs equal and opposite forces
В	50.Newton's First Law	Doubles when speed and radius of trajectory both double.
Ą	51.Newton's Second Law	F. Is greatest for largest mass among similarly shaped objects.
D	52. Newton's Third Law	G. Triples if mass is increased nine times.
F	53.Terminal Velocity	H. Velocity.
E	54.Centripetal Acceleration	I. Average speed over a very short time interval.
\mathcal{I}	55. Instantaneous speed	Rate of change of velocity with time.

Page 11 of 13: Exam I F07

Note: The following problems may require somewhat more calculation than the average. You may wish to sequence your work accordingly.

56. A 40-kg crate is being pushed across a horizontal floor by a horizontal force of 240 N. If the coefficient of sliding friction is 0.1, what is the acceleration of the crate, most nearly?

4 /N/= Fx = (0.1)(40.11) = 40 N

a. zero

b. 1 m/s²

c. 2 m/s^2

d. 3 m/s^2

 e_{\cdot} 4 m/s²

g. 6 m/s²

FUET = FAH - Ff = 240-40=200 N= ma

= a= 200 = 5 m/sec2

h. None of the above is within 10 % of the correct answer.

57. Angel Falls in southeastern Venezuela is the highest uninterrupted waterfall in the world. If the water is flowing horizontally at a speed of 3 m/s as it passes over the lip of the falls, and the height of the falls above the pool is 1125 m, how far out from the lip does the falling water hit the pool?

a. 0 m

b. 3 m

1 g(tf. 1)2 = 1125 => & Fell = \(\frac{2250}{10} = 15 \text{ Sec}

c. 15 m

d) 45 m e. 3375 m

dx = vex tfd= 3.15 = 45m

f. None of the above is within 10% of the correct answer.

Page 12 of 13: Exam I F07

58. A red ball is thrown straight down from the edge of a tall cliff with a speed of 20 m/s. At the same time a green ball is thrown straight up with the same speed. If the green ball travels up, stops, and then drops to the bottom of the cliff, how long after the red ball will the green ball hit the ground?

a. 1s
b. 2s
C. 3s
C. 3s
C. 4s.
E. 5s
C. 5s

g. None of the above is within 10% of the correct answer

59. A man stands on a large platform merry-go-round which is rotating at a constant angular speed, $\omega = 1.0$ radians/second. The normal force between his shoes and the platform is equal to his weight, 500 N, and the coefficient of static friction is $\mu_{\text{STATIC}} = 0.4$. How far from the center can he stand without sliding off the platform, most nearly?

platform, most nearly?

a. 1 m

b. 2 m

c. 3 m

d. 4 m

Frankfield = MR. W= 50R > 200

him gang in circle. Then if 50R > 200

him gang in circle. R> 4 m

i.e. R> 4 m

fg None of the above is within 10% of the correct answer.

Freeken can not keep

Page 13 of 13: Exam I F07

60. Suppose Newton lived on another planet and thought of launching his apple horizontally at such a speed as to make it travel around that planet (presumed smooth for the present discussion) in a circle at fixed height. What horizontal speed must it have to have to stay at the same (small) height above the planet's surface? (Take the radius of the planet to be 2x106 m, and the planet's gravitational acceleration to be 8 m/s².) a. $4 \times 10^2 \text{ m/s}$ b) $4 \times 10^3 \,\text{m/s}$ c. 4 X 10⁴ m/s d. 2 X 10⁶ m/s e. 16 X 10⁶ m/s

f. None of the above is within 10% of the correct answer.